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i orameive  RATIONALE FOR COMPETITION (COMP WEBPAGE)

* Tackle climate change by decarbonisation of energy production with the use
of renewable energy sources such as wind and solar.
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VWHY SHOULD WE FORECAST DEMAND AND

THE UNIVERSITY
@ OF QUEENSLAND

* Renewable energy cannot be produced on demand but the production depends
on when wind blows and sun shines

* Storing energy is costly and normally associated with loss of energy

* With more renewable energy in grid, increasingly important to accurately
forecast
* energy demand
* energy production from renewables

“...the reality is that the
technology is not there at the
moment to store energy

when the sun's not shining or
the wind's not blowing...” (April
2018)




oroumvioo  FORECASTS ARE THEN USED TO ...

* To be able to produce power from on-demand-sources (e.g., gas plants) if
needed

* To shed loads and schedule demand to certain times where possible
* To optimally schedule energy storage solutions such as batteries.
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Oakey Gas Turbine, QId Wivenhoe pumped hydro, near Brisbane  Hornsdale Battery, 220 km N of Adelaide



oraneens  AABSTRACT

* In particular, a nowadays common setup is a rooftop solar installation and
a battery, together with certain demand flexibilities.

* Here, we need to forecast
* the electricity demand,
* the renewable energy production,

* the wholesale electricity price, to be able to then optimally schedule the charging
and discharging of the battery, and to schedule the schedulable parts of the
demand (when to put the washing machine, when to use the pool pump, etc.).

* In this way, we can charge the battery with overproduction of solar
energy, and use power from the battery instead of power from the grid
when energy prices are highest, as well as schedule demand according to

energy availability.
> redback

technologies
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Foromavo  BATTERY SCHEDULING AT REDBACK (2016-2019)

Using solar and load predictions in battery LXXX
scheduling at the residential level X —_——————,—,——>

+ + + + I
Richard Bean Hina Khan ] 1
Redback Technologies School of ITEE I
Brisbane, Australia The University of Queensland, Australia PV I
Abstract—Smart solar inverters can be used to store, monitor [0 N ﬁ I
and manage a home’s solar energy. We describe a smart solar == |
inverter system with battery which can either operate in an PV arrays ¥ Grid
automatic mode or receive commands over a network to charge : —
and discharge at a given rate. In order to make battery storage  ~— "7~ Lo 1 o I
financially viable and advantageous to the consumers, effective it 1 . —>1
battery scheduling algorithms can be employed. Particularly, I e
©0  when time-of-use tariffs are in effect in the region of the v [— petes
™ inverter, it is possible in some cases to schedule the battery ! ————— —
<> to save money for the individual customer, compared to the DD R @
(| “automatic” mode. Hence, this paper presents and evaluates aatteries 1Ll
+—=  the performance of a novel battery scheduling algorithm for Back up loads D T T G G G GEI T —
Q residential consumers of solar energy. The proposed battery
o heduling algorithm optimizes the cost of electricity over next  Fig. 1. Schematic of inverter with associated electrical loads, battery and | |
24 hours for residential 5. The cost minimizati gnd conneclions
\O is realized by controlling the charging/discharging of battery I
storage system ba on the predictions for load and solar
[ ge sy based on the predictions for load and sola
power generation values. The scheduling problem is formulated
>_‘ as a linear programming problem. We performed computer I AC |0 a d S
simulations over 83 inverters using several months of hourly - . . . . .
7 p) load and PV data. The simulation results indicate that key of 5 kW. If the m_vcncr is located in Australia \hilth 5 kW
v factors affecting the viability of optimization are the tariffs of solar panels, this corresponds to an average daily output W | t
d and the PV to Load ratio at each inverter. Depending on the of between 17.5 kWh (Hobart) and 25 kWh (Alice Springs) nVe r e r
“— tariff, savings of between 1% and 10% can be expected over  ([S]). The batieries attached to the inverter have an associated
_, the au!.o:];l]-chappn:ach.tTh;:)'mdl;:qn app:‘c:ach ufsed in lt.h's state of charge value which must be kept between a range of I
paper is shown to out-perform basic persistence forecasting ~ ey ) e i
% approaches. We have also examined the approaches for improy- values (e.g. 20%-100%) to avoid adverse effects or battery —i —i I

ing the prediction accuracy and optimization effectiveness. failure. The information related to the load, PV, state of

VN
Back up loads

Batteries
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* Researchers from the IEEE Computational Intelligence Society (IEEE-CIS) want

THE PREDICT+OPTIMIZE PROBLEM

to improve solutions to this complex problem of “predict + optimize”, in this
particular application of scheduling in the context of renewable energy.
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Abstract. Many real-world analytics problems involve two significant challenges: pre-
diction and optimization. Because of the typically complex nature of each challenge, the
standard paradigm is predict-then-optimize. By and large, machine learning tools are
intended to minimize prediction error and do not account for how the predictions will be
used in the downstream optimization problem. In contrast, we propose a new and very
general framework, called Smart “Predict, then Optimize” (SPO), which directly leverages
the optimization problem structure—that is, its objective and constraints—for designing
better prediction models. A key component of our framework is the SPO loss function,
which measures the decision error induced by a prediction. Training a prediction model
with respect to the SPO loss is computationally challenging, and, thus, we derive, using
duality theory, a convex surrogate loss function, which we call the SPO+ loss. Most
importantly, we prove that the SPO+ loss is statistically consistent with respect to the SPO
loss under mild conditions. Our SPO+ loss function can tractably handle any polyhedral,
convex, or even mixed-integer optimization problem with a linear objective. Numerical
experiments on shortest-path and portfolio-optimization problems show that the SPO
framework can lead to significant improvement under the predict-then-optimize para-
digm, in particular, when the prediction model being trained is misspecified. We find that
linear models trained using SPO+ loss tend to dominate random-forest algorithms, even
when the ground truth is highly nonlinear.

Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems

Jayanta Mandi,' Emir Demirovié,” Peter. J Stuckey,” Tias Guns'
"Data Analytics Laboratory, Vrije Universiteit Brussel {jayanta.mandi,tias.guns} @vub.be
2University of Melbourne {emir.demirovic,pstuckey } @unimelb.edu.au

Abstract

Combinatorial optimization assumes that all parameters of
the oplimization problem, e.g. the weights in the objective
function, are fixed. Often, these weights are mere estimates
and increasingly machine learning techniques are used (o for
their estimation. Recently, Smart Predict and Optimize (SPO)
has been proposed for problems with a linear objective func-
tion over the predictions, more specifically linear program-
ming problems. It takes the regret of the predictions on the
linear problem into account, by repeatedly solving it during
learning. We investigate the use of SPO to solve more realis-
tic discrete optimization problems. The main challenge is the
repeated solving of the optimization problem. To this end, we
investigate ways to relax the problem as well as warm-starting
the learning and the solving. Our resulis show that even for
discrete problems it often suffices to train by solving the re-
laxation in the SPO loss. Furthermore, this approach outper-
forms the state-of-the-art approach of Wilder, Dilkina, and
Tambe. We experiment with weighted knapsack problems as
well as complex scheduling problems, and show for the first
time that a predict-and-optimize approach can successfully be
used on large-scale combinatorial optimization problems.

execution and predictive ML models can be used for estima-
tion of those paramelers [rom historical data. For inslance,
Cohen et al. first predicted future demand of products using
an ML model and then use the predicted demand to com-
pute the optimal promotion pricing scheme over the prod-
ucts through non-linear integer programming.

When predictive ML is followed by optimization, it is ol-
ten assumed that improvements in the quality of the predic-
tions (with respect to some suitable evaluation metric) will
result in better optimization outcomes. However, ML mod-
els make errors and the impact of prediclion errors is not
uniform throughout the underlying solution space, for ex-
ample, overestimating the highest-valued prediction might
not change a maximization problem outcome, while under-
estimating it can. Hence, a better prediction model may not
ensure a better outcome in the optimization stage. In this
regard, Ifrim, O’Sullivan, and Simonis (2012) experienced
that a betler predictive model does not always (ranslate o
optimized energy-saving schedules.

The alternative is to take the effect of the errors on the
optimization outcome into account during learning. In the

mnatart AF Lanne mencenseminne senhlasen Dlasankhtank aed



5 oo MIONASH MICROGRID
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Smart Energy City

We're building an on-site microgrid at Clayton campus. In the next 10 years, we'll The Monash Microgrid
eliminate our dependence on coal-fired energy sources. ' -

20 bulldings across the Clayton
Our microgrid will be versatile enough to receive and store energy from various campus, comprisi'ng ;
renewable energy sources. We'll be able to control when and how we use our 3.5 Megawatis of deman
energy, which means we can reduce demand and strain on the network during 1 Megawatt of Solar

peak times. Photovoltaics

Our microgrid will also help stabilise the wider grid, making it more resilient. This fegawatt hour
will benefit the broader community, especially during extreme weather events. of battery storage

2 Electric Vehicle chargers

Watch on (£ Youlube




oraneens  AABSTRACT

* From a machine learning point of view, the provided data poses an interesting
time series prediction problem, with
* multiple seasonality,
» use of external data sources (weather, electricity price)

* the opportunity for cross-learning across time series on two different prediction problems
(energy demand and solar production).

* Then, from an optimization point of view, uncertainty in the inputs needs to be
addressed together with a couple of constraints, to achieve a good solution.

* RB note: need to use R, Python and Java quite a bit R A pgthon
* R for forecasting
* Python for optimisation (works best with Gurobi)

 Java for the schedule evaluation program ETZ

* If successful, you will not only help making renewable energy more reliable and
affordable, thus playing your part in the fight against climate change, but the
proposed technical challenge may be applicable in many other fields facing
similar problems of optimal decision-making under uncertain predictions

GUROBI

OPTIMIZATION




orqumsive  REQUIREMENTS

* Develop an
* optimal battery schedule
e an optimal lecture schedule — recurring activities and once-off activities

based on predictions of future values of energy demand and production.

* With input data:

* Energy consumption data every 15 minutes from 6 buildings on the Monash
Clayton campus, to September 2020

* Solar production data every 15 minutes from 6 rooftop solar installations from the
Clayton campus, to September 2020

* Daily weather data from Australian Bureau of Meteorology (daily solar, max and
min temperatures, rain) — three sites

* Hourly weather data from European Centre for Medium Range Weather
Forecasting (ECMWF) — one point (from 11 August 2021)

* Electricity price data from Australian Energy Market Operator (30 minute)

g\
s 9§ MONASH
ECMWF @ University




i oo REQUIREMENTS AND ASSESSMENT
Phase 1

* Optimally schedule a battery and timetabled activities (lectures) for the month
of October 2020.

* In real life, the battery scheduling would usually happen on a daily basis, with
day-ahead forecasting.

* For the competition the test set cannot be disclosed, so that a whole month
needs to be forecasted.

* However, with the availability of weather data, this task is still close to the real
world application, with the assumption of having perfect 1-day-ahead weather
forecasting and having perfect electricity price forecasting.

* Phase 1 - public leaderboard where participants submit forecasts and the
leaderboard shows the evaluation of the forecasts (MASE error rate and cost)



E?Eoﬂz‘é‘;%if:ﬁz LEADERBOARD

AUSTRALIA

Title Submitted by Mean MASE 1 Energy Cost Last Submission

nov3x Richard Bean 0.646022 335107.248311086 2021-11-03 08:59:38
final_submission Rasul Esmaeilbeigi 0.744052 328359.202909373 2021-11-01 22:08:38
SZU-PolyU-Team Qingling ZHU 0.774996 342810.01676205 2021-11-03 00:12:18
final_submission_ Xu Yaolian 0.774996 342838.193792926 2021-11-02 00:30:26
EVERGI team final submission Julian Ruddick 0.807299 340725.940843299 2021-11-02 13:37:39
Base solution Akylas Stratigakos 0.847391 363168.136647165 2021-11-03 03:47:14
Submission19 Steffen Limmer 0.855737 339160.427284564 2021-10-22 21:53:30
Standard Nils Einecke 0.903562 589356.97587725 2021-10-16 01:29:10
FRESNOB Rui YUAN 1.002641 395581.333876972 2021-10-28 21:25:08

Final_submission Tomas Ochoa 1.012309 589356.97587725 2021-11-02 12:04:19



i oo REQUIREMENTS AND ASSESSMENT
Phase 2

e Data for October 2020 is released to the participants, and they are now asked
to perform the same forecasting and optimisation exercise for November
2020.

* Now, only minimal feedback is provided to the participants about the quality
of their submissions. Solely Phase 2 of the competition is relevant to
determine competition winners and prizes.

* The 3 main competition prizes will be awarded to the schedules that lead to
the lowest cost on the Phase 2 test set. (SUS7000, SUS5000, SUS3000)

* An additional prize will be awarded to the team that achieves the most
accurate forecasts on Phase 2. (SUS2000)




Foramse  BUILDING DATA IN OCTOBER 2020

AUSTRALIA
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Foramao  SOLAR DATA IN OCTOBER 2020
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&oromivs  OBJECTIVE FUNCTION

Objective

For a feasible schedule, we compute the objective value in terms of the cost of the schedule, which is to be
minimized. The cost of the schedule depends on three parts:

+ The total energy cost computed against the wholesale price e,
¢« The peak load tariff taken over the whole month,
+ The value of the once-off activities scheduled d; € {0, 1}, whether in or out of office o; € {0,1}.

The objective O is computed as follows:

~ 0.250;¢ . -
li][]:] : + [}-ﬂ{]ﬁ[m?th - L{d‘ - (value; — o;penalty;))

t A4

/

Becomes an MIQP (Mixed Integer Quadratic Program)

U_



B oroumse  SCHEDULING FILE EXAMPLES

ppoi 6 6 2 200 100

b0132

b111

b355

b443

b573

b61l1l

s00

sl11

s23

s34

s45

s56

c01150750.85
c13420600.60
r015S315522869198 137
ri1255165215263126 149

a02554730283113493

Predict Plus Optimize Instance, 6 buildings/solar, 2
batteries, 200 recurring activities, 100 once-off activities

Building 0 has 13 small + 2 large rooms
Solar 0 is connected to Building O (irrelevant)

Battery 0 is 150 kWh, discharges at 75 kW, round trip
efficiency 85%

Recurring activity 0 requires 1 small room, uses 31 kW, is 5
periods long, must occur on weekdays between 9am-5pm,
and recurring activities 22, 86, 91, 98, 137 must occur on
earlier weekdays

(optional) Once-off activity 0 requires 2 small rooms, uses
54 kW, 7 periods long, bonus $30 if scheduled into working
hours, penalty $28 if scheduled outside working hours,
once-off activities 11, 34, 93 must occur on earlier days of

al1S5124451215426369 month (if included)

ppoi 6 6 2 200 100
sched 200 100

r 091 3 // period + buildings
r149222

a 0211315 // period + buildings
al110481

c000

c012

c022

c032

c04 2 // hourly charging
instructions



oroumvioo  PERSONAL BACKGROUND

* Ph.D. mathematics (UQ 2001, combinatorics)
 ROAM Consulting (now EY) 2007-2012

 AEMO (Australian Energy Market Operator) 2013
* Redback Technologies (2016-2019)

e University of Queensland (2019-2022)
* Centre for Energy Data Innovation https://cedi.uqcloud.net/

. Australlan and NZ Electricity Market regional and sub-regional demand at ROAM/AEMO —
“macro” forecasting

* Individual bu|Idmgs/solar/dlstrlbutlon transformers at Redback/UQ from inverter or smart
meter data - “micro” forecasting -

* Cybersecurity — localization of houses with ERA5 solar / load data s'ffvTEER
* ROAM - simple quadratic programming for modelling NEM bidding (COIN-OR) A
» Battery/inverter scheduling at Redback — linear programming 2§
e Combinatorics / graph theory — 0-1 integer programming (CPLEX, BonsaiG, COIN-OR, Gurobl)

* Bike sharing forecasting with GAMs and ERAS data emph. explainability >> error rate ~
energy

* Classical cryptanalysis — pattern recognition (closely connected) 18



https://cedi.uqcloud.net/

& oroumane  \WHAT WORKED IN THE PAST?

* Has anyone done this kind of thing before? What worked?
* Global Energy Forecasting Competition

.. #4{,% International Journal of Forecasting ‘-f:
* GEFCOM —three editions 2012, 2014 and 2017 bl ol 35, 5 A 03, g 35723 B
e 2012 - hierarchical load forecasting and wind power

. _ . _ Global Energy Forecasting Competition 2012
* 2014 - hierarchical load, wind energy, price, and solar |
e 2017 — hierarchical probabilistic load

e Used to inform Redback model (2016-2019)

—
A TR . R
o h ) International Journal of Forecasting E
f_,."tn-] :L volume 32, lzsue 3, July—September 20146, Pages 3%6-313 [ e
T o

Probabilistic energy forecasting: Global Energy
Forecasting Competition 2014 and beyond

Tao Hong * A B, Pierre Pinson &, Shu Fan <, Hamidre

za Zareipour °, Alberto Troceoli %, Rob |. Hyndman ©

& ;‘.-_'f'g% International Journal of Forecasting
N

Volume 35, Iszue 4, October—December 2019, Pages 1389-1399
ELSEVIEL

S
L4
T ——
————
—

Global energy forecasting competition 2017:
Hierarchical probabilistic load forecasting

Tao Hong ® & B, Jingrui Xie ¥, jonathan Black®

19
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GEFcoM KAGGLE 2012

Table 2

Summary of methods in the hierarchical load forecasting track,

Pubiic

Private

The private leaderboard is calculated with approximately 75% of the test data.

Kaggle 1D Techniques Data cleansing Weather station Holiday effect Temperature Ensemble : o N § -
selection forecast forecasting This competition has completed. This leaderboard reflects the final standings.
Countinglab MIR, singular value  Yes 11 models Yes Using the average Combine @ Frize Winners
decomposition corresponding to temperature of the forecasts
the 11 weather same hour from from the
stations were built similar days in the 5-best fitted # A Team Members Score Entries Last Code
previous years models
James Lloyd Gradient boosting Not discussed Temperatures from No Estimating the Combine e .
machines, Gaussian all stations were smooth trend and forecasts 1 -1 Tiberius Data Mining & @ 6077702849 4 9y
process regression, used daily periodicity of from three
MLR temperature models . ~ -
siaritely 2 ~3  Countinglab 2 2D @ 6721464846 33 ay
Tololo Semi-parametric Not discussed A stepwise Yes Not discussed No
regression, with procedure was 3 -3 James Lioyd ﬂ @ 7467.03127 52 ay
B-splines or cubic used for each zone
regression splines to select the station
as smooth function that minimized 4 -3 Tololo @ @ 2) @ @ n779.81027 39 9y
forecasting error on
a test set L
TinTin Nonparametric Yes Atesting week (the  Yes Using the average No 5 =2 TinTin () @ 73307.05957 42 ay
additive models last week of the temperatures at the
with P-spline, available data) was same period across .
component-wise used to determine the previous years 6 -3 yuenking @ @ 7590481627 15 oy
gradient boosting the station for each
zone - >
Quadrivio MLR Yes Load was fitted to No Averaging the No 7 - Quadrivio @ @ 7819594722 2 oY
temperature at temperatures
each station during the same
8 -2 Luxtorpeda 7979143318 7 Y
separately, and the days from previous P “ @ @
best three were years
used for each zone 9 ~5  Hugh Perkins ') @ 79850.76751 17 oy
Chaotic Random forest, Not discussed Not discussed Yes Not discussed Combine
Experiments geometric forecasts
Brownian motion from three 10 ~15  Chaotic Experiments E=] @ @ 80762.58779 19 ay
models models
Andrew L Not discussed The first No Using a generalized No
additive model, component of PCA additive model
spline, PCA was used as Congrats to CRW!
temperature
variable for each Posted in global-energy-forecasting-competition-2012-load-forecasting 2
hour
NHH Wavelet Not discussed Temperatures from No Not discussed No
decomposition, all stations were
mutual considered as input
s, hew! . Congrats to CRW! 55969.74840. Nice!
networks
ThejellyTeam Neural networks Not discussed Temperatures from Yes Using the mean of No
all stations were the same period
considered from the previous
years
Shooters Touch Regression models No Weighted average Yes Not discussed No

and neural network

of up to 3 stations,
selected based on

20
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Table 7

T. Hong |. Xie and J. Black / International Journal of Forecasting 35 (2019) 1389-1399

GEFcom 2014 AND 2017

Summary of final match methodologies.

1397

Team Ranking Data Weather Feature engineering Temperature  Modeling techniques Forecast Meter
cleansing station scenarios combine grouping |
selection hierarchy
information
Load Weather Calendar
QUINKAN 1 Yes Yes No Yes Yes No No Yes
dmlab 3 No | No No No Yes Yes Shifted-date [ Quantile gradient No
discus- (no discussiofboosted regressio
sion on the value [litrees
k and n)
Orbuculum 4 Yes No Yes No Yes No Gradient boosting Yes No
(transformation) machine, quantile
random forest, and
naive forecast
GeertScholma 5 Yes Yes No Yes Yes Shifted-date e - Yes No
(k =7, n=2) regression and
autoregression
Cassandra 6 Yes No No No Yes No Neural network-basedNo Yes
quantile forecasting
model, and time
It Can Be 7 No /| No No No No Yes
Done discus- (transformation)
sion
Sim- 8 Yes No No No No No
ple_but_good
ucm 9 Yes No No Yes Yes No Linear regression Yes Yes

model, factorial
model, profiling

Table 11
Summary of the methods used by the top five teams in the solar track of GEFCom2014.
Team Parametric/nonparametric  Forecasting models and Generalization Input variables and Offsite
techniques ability (preventing features (most information
overfitting) important)
Gang-gang Nonparametric Gradient Boosting (GB) Cross-validation Clear sky model, as Yes
and k-Nearest well as all variables
" provided
dmlab Nonparametric Quantile Regression Cross validation Variables provided, No
Forest (QRF) and time of day and of
Gradient Boosting year, differentiated
Decision Trees (GBDT) variables (for the
accumulated fields)
C3 Green Team Nonparametric Multiple Quantile Feature selection Wealth of features Yes
Regression (MQR) algorithm, based on all input
regularization when variables, time of
estimating, and day and time of year
cross-validation
Giuseppe Casalicchio  Nonparametric Quantile Regression and Lasso penalization Wealth of features Yes
Quantile Regression based on all input
Forest (QRF) variables,
considering lagging,
smoothing, and
combination
UT_Argonne Nonparametric Ensemble of Random Training data Wealth of features Yes
Forest (RF), Gradient selection based on all input
Boosting Machines variables,
(GBM) and Support considering time

Vector Machines (SVM)

shifting, integration,
etc.

21
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International Journal of Forecasting

European Journal of Operational Research
Wolume 32, Issue 3, July-September 2016, Pages 535-597

Volume 251, Issue 2, 1 June 2016, Pages 522-530 %

Production, Manuffa.cturing and Logistics

Forecasting day-ahead electricity load using a

ELSEVIER

Electric load forecasting with recency effect: A big
data approach

Pu'Wang ®, Bidong Liu ®, Tag Hong " & 8

Showmare v multiple equation time series approach
+ AddtoMendeley of Share 53 Cite AE. Clements, AS. Hurn, Z. Li2 &
https: {doi.org/10.1016 j.ijforecast. 2015.09.006 Get rights and content Show more

+ Add to Mendeley &2 Share =8 Cite

Abstract
Temperature plays 2 key role in driving the electricity demand. We adopt the https:/doi.org/10.1016/j.ejor.2015.12.030 Get rights and content
“recency effect”, a term drawn from psychelogy, to represent the fact that the
electricity demand is affected by the temperatures of the preceding hours. In the
load forecasting literature, the temperature variables are often constructed in the
form of ed hourly temperatures and moving average temperatures. In the past, . .

88 v g averge e F Highlights
computing power has limited the amount of temperature variables that can be used
in a load forecasting model. In this paper, we present a comprehensive study to «  Amultiple equation time series model is built to forecast electricity load.
model the recency effect using a big data approach. We take advantage of modern
computing power to answer a fundamental question: how many lagged hourly + Interactions in seascnal patterns are given special prominence.
temperatures andfor moving average temperatures are needed in a regression model in order
fo capture the recency effect fully without compromising fhe forecasting accuracy? Using a + The model is easily estimated by repeated application of ordinary least
case study based on data from the load forecasting track of the Global Energy squares

Forecasting Competition 2012, we first demonstrate that a model with the recency
effect outperforms its counterpart (a.k.a. Tao’s Vanilla Benchmark Model) by 18% to
21% for forecasting the load series at the top (aggregated) level. We then model the

recency effect in order to customize load forecasting models at the bottom level of a

» The model achieves a mean absolute percentage error of 1.36% in day-
ghead forecasting over 11 years.

geographic hierarchy, again showing a superiority over the benchmark model of

12% to 15% on average. Finally, we discuss four different implementations of the + Forecasts DUtPﬂfom the indu ¥ standard bF about 2 third.

22
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KEY STEPS - FORECAST

* The most important step! Reproducible code
* Find the approach that gives the lowest MASE for each time series on

phase 1
* R script change PHASE value to 2 and rerun

"nf.'|'i5t=15'i:::/

PHASE =- 1

FLIST <- c("phase_1_data.tst", "phase_2_data.tsf")

PDAY =- ci(31,30]

PMONTH <- c(10,11)

DAYS <- PDAY[PHASE]

PERIODS <- DAYS * 24 * 4

HOURS <- DAYS = 24

HOLURL =- HOLRS - 1 | ) _

FIRSTPERIOD <- paste("2020-" PMONTH[PHASE] ,"-01 00:00:00",sep=""

Data Replication & Reproducibility

PERSPECTIVE

Reproducible Research in
Computational Science

Roger D. Peng

Reproducibility Spectrum

Publication +
Publication " Full
Linked and S
only Code ar?:?!:ta executable repiication
code and data
Not reproducible p Gold standard

Fig. 1. The spectrum of reproducibility.

1226 2 DECEMBER 2011 VOL 334 SCIENCE www.sciencemag.org
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oranmems PARADOX?

If you think the competition is just pure skill you won’t enter
Phase 2 but if you think luck is involved you’ll definitely just
run your Phase 1 model on Phase 2. i.e. it’s better for the
competitors and competition organizers if they believe luck is
involved.
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AUSTRALIA

amaw  RANDOM FORESTS

BEE

Pedro Domingos @pmddomingos - Sep 30
Considering that random forests have many layers and beat deep learning
in most applications, maybe we just need to rebrand them as deep forests

and they'll be the next big thing.

L]

— -
L) 3 'l o ) 73 Ty

o

FCURE

A FOREST

And the forests will echo with laughter. Does anybody remember forests?

> M O s/ o £« (@ O 2

Led Zeppelin - Stairway To Heaven - Seattle 07-17-1977 Part 18 3 ’
. . ’ . ‘e k

522K GBI 17K 2 SHARE =4 SAVE ... :
g e _ Q,another Iand

5304,014 views - 19 Dec 2014

Led Zeppelin Thom Pace
The Cure
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W orommane  PHASE 1 FORECASTING

AUSTRALIA

* Weather data provided was originally daily, but 15 minute forecasts required — daily max/min temp, rain, solar at 3 sites

 Initially used GAMs (generalized additive models) which is great for visualizations and explainability, especially for bike-
sharing demand

BEN
T Solar Energy
232, 15 January 2022, Pa

&5 Velume 232, 15 January ges 263274
EL \

* Switched to random forests as the competition was only about performance

A historical weather forecast dataset from the
European Centre for Medium-Range Weather

* Inspired by GEFCOM — 12 ECMWEF variables used, here 8; same as Redback work Forccasts (FCMWF)for encegy forccasting
* https://apps.ecmwf.int/codes/grib/param-db 5,656 parameters

Parameter ID 078 | 079 |134| 137 |151(157|164|165(166|167|168| 169 | 175 |178(186| 206 | 212 (228(243|228021(228022|228129| #
Short Name TCLW |TCIW| SP | TCWV|MSL| R |TCC|10U|10V| 2T | 2D |SSRD|STRD|TSR|LCC|TCO3|TISR| TP |FAL| FDIR | CDIR | SSRDC

GEFCOM2014-S X X X X X X X X X X X X 12

IEEE Tech Challenge 2021 X X | X X X | X X X 8

Espejo et al 2019 X X X X X 5
Yang et al 2022 (N.

. X X X X | X | X X X X X X X | X X 14
America/Europe)

OEMOF Feedinlib / PVLIB X | X | X X X 5

Greco-Project PVCompare X X | X | X X X 6
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W orommane  PHASE 1 FORECASTING

* Random forest libraries have the useful “variable importance” ranking
* Lagging and leading data (up to 3 hours)
* Day of week, time of day, Julian date (Fourier values)

* “Days before” temperature effect
. Data cleaning — missing data “Everyone wants to do the m_ode{ work, not the data work”:
Data Cascades in High-Stakes Al

Normal Q-G Plot

Sample Quantles

T T T
o 1 2 3 4

Theaoretical Quantilkes
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oraumens  PHASE 1 & 2 CHALLENGES — DATA ISSUES

1 October — participant found bug in optimisation evaluation code — adding solar power onto net load, not subtracting it.
Competition phase 1 extended by a week

* 4 October — seeing this, | wrote to organizers. Time zone issues: optimisation was happening 9am-5pm UTC i.e. 8pm-4am
Melbourne time. Like bug bounties — perhaps there should be rewards for finding these.

e 21 October — several bugs in optimisation evaluation; “recurring activities”
e 25-29 October — leaderboard recalculated
* Repeated leaderboard outages, spammers

* Missing data points treated as “zero” values — random effects
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OF QUEEE KEY STEPS

* Quantile regression forest — forecast median to minimise MAE

r

* (i.e. sum of deviations from actual value) %'" i

>,

v 22

* Most important parameter to tune — “mtry” T
* Training against individual phase 1 time series (without overfitting)
* Each hour gets 4 random forests (each quarter hour)

e Choosing building start months of 2020 (Building 0,1,3,6)

* Removing building outliers

* Choosing solar start months (Solarl has some cumulative data)
* Predictor variables: ECMWEF vars lead/lag 3h, day of week, day of year et"c
* Public holiday — 23 October Grand Final holiday excluded from training

* Building4 and Building5 set to median values of Oct 2020 (1 and 19 kW)

* Forecast groups of buildings and solar together with normalization (critical, but mentioned
by organizers “cross-learning across time series”)

e Using BOM daily and ECMWEF 1 hour data together (critical ... is this surprising?)
* Solar0 and Solar5 thresholding hugely improves MASE (critical)
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& oramse  PREDICTOR VARIABLES FOR BUILDING

wh temperaturedewpoint wind MSLP R SSRD STRD TCC| b8 b9 bl0| ti t2 t3
6 9.7 7.3 50 1005 0.85 59.4 3384 1.00(45 28 26| 9.7 9.8 10.1
tf tf2 tf3 t24  t48 t72 s1 s2 s3 sf  sf2 sf3 stl st2  st3
10.2 10.7 10.6 138 134 123 154 11 0 182 244 152 344 347 345
stf stf2 stf3 wl w2 w3 wfl wf2 wf3 di1 d2 d3 dfl df2 df3
319 328 334 4.6 4.4 6.3 57 59 58 76 77 79 73 73 7.8
rhl rh2 rh3 rhfl rhf2 rhf3 ccl cc2 «cc3 ccfl ccf2 ccf3 mslpl mslpf hrl
0.87 0.87 086 082 08 083 1.00 1.00 1.00 0.97 0.99 0.99 1005 1005 O

sin hr cos hr wd wdl wd2 wdx0 wdx1l wdx2 wdx3 wdx4 wdx5 wdx6 sin day cos day| x1

0 1 0 1 0 0 1 0 0 0 0 O 050 -0.87 (0.63
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wh

t2

12

sf3

0.66

ccfl

0.48

temperature

12

t3

12

stl

318

ccf2

0.58

MSLP

1018

tf

12

st2

332

ccf3

0.74

SSRD

203

tf2

11

st3

347

mslpl

1017

STRD

321

tf3

10

stf

311

mslpfl

1018

PREDICTOR VARIABLES FOR SOLAR

TCC

0.37

sl

221

stf2

308

sin hr

0.97

b8

b9 b10 tl

8.8 8 6.6 12

s2 s3 sf sf2

172 173 145 54

stf3 ccl cc2 cc3

303 0.56 0.81 0.94
cos hr sin day cos day x1
0.26 0.66 -0.76 0




Eorommano  MIASE EXPECTATION

Almost all my forecast MASE improvement came after Phase 1 data

was released.
Obviously lots of room to improve SolarQ/5 still

“Progress usually comes from many small

improvements; a change of 1% can be a reason
to break out the champagne.”

Case
Building0
Building1
Building3
Building4
Building5
Building6

SolarQ
Solar1
Solard
Solar3
Solard
Solars

Mean

MASE Phase 1

0.4301

0.6115

0.3310

0.5637

1.0370

0.7676

0.8479

0.4619

0.5251

0.5810

0.5624

0.8559

0.6320

MASE after tuning
0.3859
0.4251
0.2913
0.5637
0.8383
0.7336
0.6558
0.3619
0.4139
0.4990
0.4219
0.e092

0.5166
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& oranewn  ERA-5 DATA PROVIDED

Questioning how provided ERA-5 data was derived.
Inverse distance weighting (exponent 2) of four ERA-5 points (0.25 degrees).

Lots of subtleties e.g. exponent choice in IDW, losing wind speed dir/quant
nuances.

I've done . .. questionable things

m
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s (OTHER VARIABLES

* Could Phase 1 forecast have been improved with extra data (NWP, AEMO etc) or a
different approach? (using AEMO data might be a bit circular)

Yes, but not by large amounts

* AEMO price and demand data (had to download 3 files for competition Phase 1 & 2) is half
hourly — is microgrid subject to wholesale price? Price/Demand improves BO/B6 forecast!

* AEMO Rooftop PV Actual data from NemWeb is half hourly

* ERAS precipitation data — e.g. ILSPF “Instantaneous large-scale surface precipitation fraction”
* ERA5-Land data is 0.1 degrees — but only 3 points to interpolate from

e Other solar vars for PVLib: FDIR ~ GHI, SSRDC, CDIR to derive DNI, DHI etc. Diffuse radiation.
* Wind direction

* JRA-55 has 3-hourly data grid point 400 m from Monash
 NASA MERRA-2 1h data - SWGNT ~ SSRD
* GFS reanalysis data (3-hourly) is painful to process

* PvOutput.org has many nearby points (5 min data, $15 donation for 1 year access) or Solar
Analytics

* WeatherMan/Solcast approach — derive solar installation parameters from data, resimulate
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PERFORMANCE IN PHASE 2

 Best forecast of 9 of 12 time series (3/6 Buildings, 6/6 Solar)
* Combining all entries only improves to 0.6276

e Using AEMO 5-minute Vic demand allows more improvement

MASE Bean Abolghasemi SZU EVERGi | Stratigakos | FRESNO Best with AEMO

demand

mean 0.6460 0.7441 0.7750 | 0.8073 0.8474 1.0026 | 0.6276 0.6395
Building 0 | 1.0438 0.9081 0.9413 | 1.2008 1.3227 1.2376 | 0.9081 0.9876
Building1 | 0.8840 0.9610 1.0171 | 1.1341 1.0362 1.1077 | 0.8840 0.8724
Building 3 | 0.6494 0.7524 0.6099 | 0.6398 0.7785 0.7711 | 0.6099 0.6486
Building4 | 0.7236 0.6775 0.7236 | 0.8096 0.8269 0.7236 | 0.6775 0.7236
Building 5 | 0.7922 0.9654 0.8563 | 0.9493 0.8463 0.9157 | 0.7922 0.7922
Building6 | 0.7476 0.7822 0.8611 | 1.0182 0.8577 0.7694 | 0.7476 0.7457
Solar 0 0.6019 0.9305 0.9159 | 1.0439 1.0170 1.4421 | 0.6019 0.6016
Solar 1 0.3860 0.4187 0.5222 | 0.3988 0.5416 0.8155 | 0.3860 0.3831
Solar 2 0.4148 0.5314 0.6186 | 0.5248 0.6656 0.9462 | 0.4148 0.4166
Solar 3 0.5475 0.7032 0.6678 | 0.7221 0.7118 1.0440 | 0.5475 0.5420
Solar 4 0.4179 0.5616 0.6516 | 0.5173 0.7002 0.9947 | 0.4179 0.4183
Solar 5 0.5435 0.7366 0.9145 | 0.7289 0.8639 1.2640 | 0.5435 0.5417
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samiss  OPTIMIZATION

* Solving the model as a MIP is much easier than solving the MIQP.

* Almost all of the submitted solution depends on first deriving the best
MIP solution possible (i.e. minimizing the recurring load or minimizing
the recurring + once-off load) and only then solving as an MIQP

* Gurobi 9.1.2 (laptop phase 1, UQ HPC phase 2)

* Various papers about “Predict+Optimize” problem but Phase 1 and
leaderboard seem to indicate no close relationship between forecast
result and cost. Complex problem, competition issues, limited time
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oraowns  AARRAYS VS TUPLES APPROACH (NICOLE TAHERI)

- ; o GUROBI
problem formulation: arrays Lot problem formulation: tuples i W ouhon

Anaiymcs

Parameters

) Parameters Decision Variables meensnon Description
5 Decision Vanagles Dimension Description : Dimension Description Zs : p;‘oducllon lines

7 Z 4 cheeses

imension escription # production ines Z3%C (Start time, End time, Line) 7

{0,1}7XCXT T schedule # cheeses 4 AR # time periods
{0,1}PxC Production line # time periods , {0.1 }C % Comparison of start times Unit production times
{0,1}6x7 Production start time Unit production times {0.1} Sane producion ke Demand

Demand R Big M (e.g., 1€6)

minimize L minimize L

subjectto L > (t-Xxpct) vp.c.t subjectto L > e, Ve
(ZpA,xp.cA,) > ke - de Ve (ec —Sc) > ke - de Ve
(XeXpet) <1 vp.t ferco 2 (1/M) - (8¢, — Sc,) Ve,
Yp.c = Max¢{Xpc,t} vp,c feioo =1—Te 0 Ve,
(Xp¥pe) <1 vp.t Meyc, = (T7M] - [e, = To,| vey,
Set = max(O.xp.c., = Xp.C.(l—1)) Vt>0 Me, ¢, <M- |(AC| = (Ozl vey,
(>-¢Sct) <1 Ve Me,, =1 — Mgy 0, Ve,

min(me, ¢, fe,.c2) - (Se, — €¢,) > 0 Ve,

1 iff ¢, production starts before c»

% 5 Zoptimization #datascience #dataanalytics
#optimization #datascience #dataanalytics

Advanced Methods for Optimal Scheduling Using Gurobi Advanced Metbors torGoimel Scoedilog Halng Curohl

— 3,845 views - 27 Oct 2018 52 1 SHARE =4 SAVE
3,845 views + 27 0ct 2018 1552 GP1 ) SHARE =% SAVE ... . & 7 »

Gurobi Optimization
i Optimizati SUBSCRIBE
‘ Gurobi Optimization SUBSCRIBE ‘ 3.69K subscribers
3.69K subscribers

Scheduling problems arise in a wide range of applications, and solving large-scale problems
efficiently can require expert knowledge and insights. In this recording, we'll cover advanced
methods for efficiently solving large and complex scheduling problems. This is a follow-up to the

Scheduling problems arise in a wide range of applications, and solving large-scale problems
efficiently can require expert knowledge and insights. In this recording, we'll cover advanced

methods for efficiently solving large and complex scheduling problems. This is a follow-up to the

SHOW MORE
SHOW MORE
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oo NOW THAT WE HAVE A GOOD STARTING POINT ...

* Conservative is just choosing the lowest recurring load and lowest recurring + once off load and
evaluating cost using a naive or flat forecast. This was probably the winning approach for cost in
Phase 1, as some competitors had winning results with no forecast, or a poor forecast, but
s%emeczi pointless to me as the organizers said quality of forecast should contribute to results in
phase 2.

* Forced discharge forbids any charging in peak hours, and forces at least one of the two batteries
to be discharging in every peak period.

* No forced discharge forbids any charging in peak hours, but the MIQP solver decides whether to
discharge or do nothing in those hours.

* Liberal allows charging in peak, but the maximum of recurring + once off + charge effect for each
period is limited to the maximum of recurring + once off load over all periods. This is to avoid
nasty surprises when the solver thinks that a period has low underlying load and schedules a
charge (due to a low price in that period) but then accidentally increases the maximum load over
all periods, which can be very costly.

* Very liberal allows charging over peak and does not attempt to control the maximum of recurring
+ once off + charge effect. This would be the best approach if the forecast was perfect.

39



AUSTRALIA

orquene  ESTIMATED COST

Only Large2/Large4 had the once-off load in, all activities, in peak.
The estimated cost is very different from the real cost.

Winning solution had almost all once-off activities included.

bean esmailbeigi evergi akylas sample
Case Estimated Cost  Actual Cost
0 34166 34509 35676 37281 57941
smalll 26651 34166
1 33682 33265 36862 50096
small1 26233 33682
Il 2 2 242 4342 24
small2 26251 33235 sma 33236 32428 343 >99
<mall3 56452 33977 3 33977 33136 38344 46427
cmalld 26107 33467 4 33463 32490 35263 99669
large0 26265 32417 0 33417 32643 34644 46404
large1 6666 33842 1 33842 33055 34949 78291
large2 75389 32841 large 2 32841 31712 36050 42501
large3 26010 33149 3 33149 32219 35389 55874
larged 25849 33334 4 33334 32903 39390 52230
Total 261906 335107 total 335107 328359 362515 589357
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Eorammse  ANONYMOUS PEER REVIEW STAGE

Final scoring not just based on cost, but on presentation + 4-page report.
https://arxiv.org/abs/2202.00894

Eight member scientific committee of academics, 3 from Monash
Ratings — 1 excellent, 2 very good, 3 good, 1 acceptable, 1 poor.
Evaluations ran from

“This was the submission | judge to be the best”

to

“There seems to be some manual tuning and heuristics, but overall the paper is well explained and
the decisions justified, and | think this would be very helpful to the readers that want to implement
something similar.”

to

amually chosen constants 1 some casese o e PG JOTECIIERG saentitccommites
Some armchair quarterbacking going on. Objective is to win forecasting e
and lowest cost approach, and there was no time to assess multiple e ——
approaches. Ad hoc approaches were clearly the best on several time

+» |saac Triguero (Associate Professor, University of Nottingham)

series. Struggled against organizer mistakes — luck involved.
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OF QuEENSEI SUMMARY

 Random forest — 4 models for each hour

* Use daily BOM solar data + ECMWEF hourly data + temporal variables
* Train buildings and solar together in groups

* Thresholding two solar series

 Arrays approach with 0-1 Mixed Integer Program (MIP)

* First minimize recurring and recurring + once-off load, then solve
MIQP

* “No forced discharge” approach chosen from 5 approaches
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oraueens  LESSONS

* Luck is an important factor

The most effective methods may be absolutely ad hoc
* “Al competitions don’t produce useful models”

e Ranger package with multithreading is very useful

* Python is much better than R for Gurobi

* If you’re a competition organizer ...
* Timely communication is essential (on errors, assessment, prizes)
* Clarify rules early — had to submit code at end of Phase 2

Secondly, and most importantly: Everyone who wins money from a competition should be required to open-source their

How a Kaggle Grandmaster cheated in
solution. | am not the first one to say this and | have no idea why it is still not the case. | understand that competition

$25’000 Al contest with hidden code - and sponsors should be able to opt-out of this for privacy reasons (but then again, why host a Kaggle competition in the first
was fired from dream SV jOb place if that's the case?), but it should definitely be the default.

Pet adoption ML coder apologizes and says desire to be

) : | would even go as far as automatically publicizing all submitted solutions after the competition. At least for Kemels
ranked #1 'compromised my judgement’

competitions this would be easy to implement and it would reduce fraud to essentially zerc. Unless | am missing something

Katyanna Quach 1010) .
Tue 21 Jan 2020 / 09:24 UTC this should not be a problem.
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Woromswe  HOW HAS THIS HELPED IN OTHER WORK?

* Preparing paper for “International Journal of Forecasting”
* Project SHIELD — data quality indicator using ECMWF data

* Cybersecurity of energy data — Springer chapter to appear
* What are the best solar/load predictor variables in an Australian context?

* Bike sharing / e-scooter data — strong parallels to energy data, but:
* Data quality is much higher

Geographically more diverse (e.g. study with 40 cities / 16 countries)

User information is available (gender, age, subscriber type)

With energy systems, user information is highly confidential and it is difficult to obtain
NMls, addresses, occupancy, gender, age, employment info etc. Huge delays due to
legal issues

Grants?
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Thank you

Contact information
R.Beanl@ugq.edu.au
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