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BACKGROUND

• Ph.D. mathematics (UQ 2001, combinatorics)

• ROAM Consulting (now EY) 2007-2012

• AEMO (Australian Energy Market Operator) 2013

• Redback Technologies (2016-2019)

• University of Queensland (2019-2022)
• Centre for Energy Data Innovation https://cedi.uqcloud.net/

• Australian and NZ Electricity Market regional and sub-regional demand at ROAM/AEMO –
“macro” forecasting

• Individual buildings/solar/distribution transformers at Redback/UQ from inverter or smart 
meter data - “micro” forecasting

• Cybersecurity – localization of houses with ERA5 solar / load data

• ROAM – simple quadratic programming for modelling NEM bidding (COIN-OR)

• Battery/inverter scheduling at Redback – linear programming

• Combinatorics / graph theory – 0-1 integer programming (CPLEX, BonsaiG, COIN-OR, Gurobi)

• Bike sharing forecasting with GAMs and ERA5 data emph. explainability >> error rate ~ energy

• Classical cryptanalysis – pattern recognition (closely connected)
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https://cedi.uqcloud.net/


KEY STEPS - FORECAST

• The most important step! Reproducible code

• Find the approach that gives the lowest MASE for each time series on 
phase 1

• R script change PHASE value to 2 and rerun
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If you think the competition is just pure 
skill you won’t enter Phase 2 but if you 
think luck is involved you’ll definitely 
just run your Phase 1 model on Phase 
2. i.e. it’s better for the competitors 
and competition organizers if they 
believe luck is involved.
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PARADOX?



RANDOM FORESTS

Led Zeppelin

The Cure
Thom Pace
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KEY STEPS• Quantile regression forest – forecast median to minimise MAE 

• (i.e. sum of deviations from actual value)

• Most important parameter to tune – “mtry”

• Training against individual phase 1 time series (without overfitting)

• Each hour gets 4 random forests (each quarter hour)

• Choosing building start months of 2020 (Building 0,1,3,6)

• Removing building outliers

• Choosing solar start months (Solar1 has some cumulative data)

• Predictor variables: ECMWF vars lead/lag 3h, day of week, day of 
year etc

• Public holiday – 23 October Grand Final holiday excluded from 
training

• Building4 and Building5 set to median values of Oct 2020 (1 and 19 
kW)
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• Forecast groups of buildings and solar together with normalization (critical, but mentioned 
by organizers “cross-learning across time series”)

• Using BOM daily and ECMWF 1 hour data together (critical … is this surprising?)

• Solar0 and Solar5 thresholding hugely improves MASE (critical)



Almost all my forecast MASE improvement came 
after Phase 1 data was released.
Obviously lots of room to improve Solar0/5 still

“Progress usually comes from many small
improvements; a change of 1% can be a reason
to break out the champagne.”
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MASE EXPECTATION



ERA-5 DATA PROVIDED

Questioning how provided ERA-5 data was derived. 

Inverse distance weighting (exponent 2) of four ERA-5 points (0.25 degrees). 

Lots of subtleties e.g. exponent choice in IDW, losing wind speed dir/quant 
nuances.
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BOM three points – 8.3, 3.2, 16.1 km away
ERA5 four pts – 21.1, 15.2, 20.7, 14.5 km
ERA5-Land three points – 11.5, 2.9, 10.3 km
MERRA-2 four pts - 15.2, 46.9, 44.6, 63.1 km
JRA-55 one pt – 440 metres
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OTHER VARIABLES

• Could Phase 1 forecast have been improved with extra data (NWP, AEMO etc) or a 
different approach? (using AEMO data might be a bit circular)

Yes, but not by large amounts
• AEMO price and demand data (had to download 3 files for competition Phase 1 & 2) is half 

hourly – is microgrid subject to wholesale price? Price/Demand improves B0/B6 forecast!
• AEMO Rooftop PV Actual data from NemWeb is half hourly
• ERA5 precipitation data – e.g. ILSPF “Instantaneous large-scale surface precipitation fraction”
• ERA5-Land data is 0.1 degrees – but only 3 points to interpolate from
• Other solar vars for PVLib: FDIR ~ GHI, SSRDC, CDIR to derive DNI, DHI etc. Diffuse radiation.
• Wind direction
• JRA-55 has 3-hourly data grid point 400 m from Monash
• NASA MERRA-2 1h data - SWGNT ~ SSRD
• GFS reanalysis data (3-hourly) is painful to process
• PvOutput.org has many nearby points (5 min data, $15 donation for 1 year access) or Solar 

Analytics
• WeatherMan/Solcast approach – derive solar installation parameters from data, resimulate
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OPTIMIZATION

• Solving the model as a MIP is much easier than solving the MIQP. 

• Almost all of the submitted solution depends on first deriving the best 
MIP solution possible (i.e. minimizing the recurring load or minimizing 
the recurring + once-off load) and only then solving as an MIQP

• Gurobi 9.1.2 (laptop phase 1, UQ HPC phase 2)

• Various papers about “Predict+Optimize” problem but Phase 1 and 
leaderboard seem to indicate no close relationship between forecast 
result and cost. Complex problem, competition issues, limited time
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ARRAYS VS TUPLES APPROACH (NICOLE TAHERI)
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NOW THAT WE HAVE A GOOD STARTING POINT …

• Conservative is just choosing the lowest recurring load and lowest recurring + once off load and 
evaluating cost using a naive or flat forecast. This was probably the winning approach for cost in 
Phase 1, as some competitors had winning results with no forecast, or a poor forecast, but 
seemed pointless to me as the organizers said quality of forecast should contribute to results in 
phase 2.

• Forced discharge forbids any charging in peak hours, and forces at least one of the two batteries 
to be discharging in every peak period. 

• No forced discharge forbids any charging in peak hours, but the MIQP solver decides whether to 
discharge or do nothing in those hours.

• Liberal allows charging in peak, but the maximum of recurring + once off + charge effect for each 
period is limited to the maximum of recurring + once off load over all periods. This is to avoid 
nasty surprises when the solver thinks that a period has low underlying load and schedules a 
charge (due to a low price in that period) but then accidentally increases the maximum load over 
all periods, which can be very costly.

• Very liberal allows charging over peak and does not attempt to control the maximum of recurring 
+ once off + charge effect. This would be the best approach if the forecast was perfect.
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ESTIMATED COST

Only Large2/Large4 had the once-off load 
in, all activities, in peak.

The estimated cost is very different from 
the real cost.
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SUMMARY

• Random forest – 4 models for each hour

• Use daily BOM solar data + ECMWF hourly data + temporal variables

• Train buildings and solar together in groups

• Thresholding two solar series

• Arrays approach with 0-1 Mixed Integer Program (MIP)

• First minimize recurring and recurring + once-off load, then solve MIQP

• “No forced discharge” approach chosen from 5 approaches
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THANK YOU

Contact information

R.Bean1@uq.edu.au
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