
New statistical approaches 
for detecting differential 

expression

Richard Bean

McLachlan Group

October 5, 2006



Our Group



Sample 1  Sample 2                         Sample M

Gene 1
Gene 2

Gene N

Expression Profile
Expression

Signature

Microarray data represented as N x M matrix Y



Class 1 Class 2

gene j Pj, zj

1-F=jz ( )jP-1



Class 1: BRCA1 (7 tissues)
-0.587 -0.5 -0.0707 -0.265 -0.542 -0.522 0.265

Class 2: BRCA2 (8 tissues)
-0.7 0.377 0.0318 -0.475 -0.627 -0.56 1.39 -0.4

Getting a P-value: An example of a gene from 
Hedenfalk et al (2001) breast cancer data
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Requires data to be normal & i.i.d. in each class.

If data are not normally distributed, can use permutation methods.

P=0.511 P=0.512



As Efron (2006) notes

“working inside the Y matrix will give more information in
some situations – but need assumptions to hold for results to be
valid – here aim is to work with a minimum number of
assumptions”



Multiple Hypothesis Testing Framework

FDR (False Discovery Rate) of Benjamini &
Hochberg (1995)
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Can implement a procedure based on P1,…,PN to
control FDR.  But FDR is a global measure.



Three Ideas

1. Use a local FDR measure

2. Estimate other error rates besides FDR e.g. FNR or 1-
FNR = sensitivity

3. Use an empirical null distribution in place of the 
theoretical null distribution
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Local FDR
Lee (2000), Efron et al (2001), Newton et al 
(2001) proposed a two-component mixture 
model
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Strictly speaking, a real Bayesian would use

},, | null is geneth { 10 Nj zzjpr !=t



F0: N(0,1), π0=0.9
F1: N(1,1), π1=0.1

Reject H0 if z≥2

τ0(2) = 0.99972
but FDR=0.17

F0: N(0,1), π0=0.6
F1: N(1,1), π1=0.4

Reject H0 if z≥2

τ0(2) = 0.251
but FDR=0.177

An example where local FDR is more 
informative: Glonek and Solomon  (2003)



-4 -2 0 2 4
0.
0

0.
1

0.
2

0.
3

0.
4

null
non-null

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

null non-null



)()1()(
)(

)(
1000

00
0

jj

j
j zfzf

zf
z

pp
p

t
-+

=



)()1()(
)(

)(
1000

00
0

jj

j
j zfzf

zf
z

pp
p

t
-+

=
f0(zj)

N(0,1)

In order to proceed with estimation of π0 (can easily
estimate f(zj) from z1,…,zN) we need to make the
problem identifiable.

Now f0(zj) is N(0,1) and we have to assume something
about f1(zj).
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f0(zj) f1(zj)

N(0,1)

N(0,1) N(μ1,σ1
2)



Z-values, null case Z-values, +1

Z-values, +2 Z-values, +3



Histogram of z-scores for 3226 Hedenfalk genes
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Fitting two component mixture model to Hedenfalk data 
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Fit 

via maximum likelihood.

For given π0, MLEs of μ1, σ1
2 are determined: try

various π0.

π0N(0,1) + (1- π0)N(μ1,σ1
2)
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Pick a value ξ < 0, for example -0.2.

π0N (area to the left of ξ) ≈ #(zj < ξ)

π0 ≈ #(zj < ξ) / N (area to the left of ξ) 



Histogram of z-scores for 3226 Hedenfalk genes
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Gene j Pj zj 0 ( zj )
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c0 = 0.1

Ranking and Selecting the Genes

FDR
= Sum/R 
= 0.06

Proportion of
False Negatives
= 1 – Sum1/ R1

Local FDR



Estimated FDR

where
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Similarly, the false positive rate is given by

and the false non-discovery rate and false negative
rate by:



Theoretical null may not hold for 4 reasons

1. Failed assumptions
• Maybe non-normality distorts student’s t-distribution
• Can use permutation methods

2. Correlation across arrays
• Student-t null density assumes independence 

across arrays
• Permutation methods cannot help

3. Unobserved covariates (age, weight, stage)
• Tend to widen null density of the zj’s
• Permutation methods cannot help



4. Correlation across genes

does not require independence of zj’s
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Suppose (1), (2), or (3) is applicable but (4) is not
(assume genes independent).

null Zj may not be ~ N(0,1)

i.e. theoretical null may not hold

Thus: use empirical null
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μ0, σ0
2 are now estimated from the data.

Call N(μ0, σ0
2) the empirical null distribution.

f0(zj) f1(zj)
f0(zj)

N(μ1,σ1
2)N(μ0,σ0

2)



Problem now is to fit 
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1. Specify an initial value of π0 (try theoretical 
null estimate and other estimates as before)

2. Rank zj’s and put Nπ0 smallest in null
component and remainder in non-null component

3. Work out means/variances as if they are the true
groups



Now suppose the zj’s are correlated (4th reason).

Even if theoretical null N(0,1) is correct for an
individual zj of a null gene, the zj’s for the null genes
may not behave as N(0,1) variates in the ensemble
of z1,…,zN.

If they don’t, then the Benjamini-Hochberg
procedure will break down using P-values based on
theoretical null.
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Fit

Still using maximum likelihood, although the function we
are maximizing is no longer the true likelihood due to correlation
across the genes.



Allison et al (CSDA,2002) generated data for 10 mice over 
3000 genes.  The data are generated in six groups of 500 with 
a value ρ of 0, 0.4, or 0.8 in the off-diagonal elements of the 
500 x 500 covariance matrix used to generate each group.

For a random 20% of the genes, a value d of 0, 4, or 8 is 
added to the gene expression levels of the last five mice.

Allison Mice Simulation



Theoretical null, ρ=0.8, d=4



Empirical null, ρ=0.8, d=4



When we need an empirical null in an actual
example

e.g. HIV data of van’t Wout et al (2003),
analyzed in Gottardo et al (2006)

van’t Wout et al (2003), J Virology 77, 1392-1402
Gottardo et al (2006), Biometrics 62, 10-18
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j th gene is taken to be differentially expressed if:
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Zj scores: N(-0.16, 1.06)

Fitted two-component model for the HIV Data



HIV data: plot of fitted two-component
normal mixture model with empirical null and non-null
components (weighted respectively by the estimated proportion of null and
non-null genes) imposed on histogram of z-scores.
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Null # significant 
genes at c0=0.1

Theoretical 0

Empirical 35



Can check for need of empirical null in place
of theoretical null by comparing
twice the increase in the log likelihood
when fitting μ0, σ0

2 instead of
fixing μ0=0 and σ0

2=1.



Summary

• Mixture model based approach to finding 
DE genes is effective

• Gives measure of local as well as global 
FDR; also gives other error rates

• Provides an empirical null for use when 
theoretical null is misleading


