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Microarrays present new problems for statistics 
because the data is very high dimensional with very 
little replication.

The Challenge for Statistical Analysis of 
Microarray Data

The challenge is to extract useful information and 
discover knowledge from the data, such as gene 
functions, gene interactions, regulatory pathways, 
metabolic pathways etc.



• DNA microarray technology originally conceived in 
order to detect expression of thousands of genes 
simultaneously

Gene Expression Studies

• Pattern of genes expressed in a cell is characteristic 
of its current state

• Virtually all differences in cell state or type are 
correlated with changes in mRNA levels of many 
genes



• DNA complementary to the genes of interest is 
generated and laid out in microscopic quantities on 
solid surfaces at defined positions

• DNA (mRNA) from samples is eluted over the 
surface – complementary DNA binds

The Microarray Experiment

• Presence of bound DNA is detected 
by fluorescence following laser 
excitation



DE genes

• A major goal is to find differentially expressed (DE) 
genes in a given number of tissue classes, e.g. genes 
over- or under-expressed in tumour vs. normal, or in 
different subtypes of cancer. 

• These genes may be useful for making new biological 
discoveries, or form part of a diagnostic kit in medicine 
(marker genes).



Sample 1  Sample 2                         Sample M

Gene 1
Gene 2

Gene N

Expression Profile
Expression Signature

Microarray Data represented as N x M Matrix

N rows (genes) ~ 
104

M columns (samples) ~ 
102



• Classify M samples with respect to g classes on the 
basis of the N gene expressions

• Assume that there are ni tissue samples from each 
class Ci (i = 1, …, g), where 

M =  n1 + … + ng.

• Take a simple case where g = 2

• The aim is to detect whether some of the thousands 
of genes have different expression levels in class C1
than in class C2.

Finding DE genes in known tissue classes
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Calculate the log ratio of the average expression between 
the two classes and consider all genes that differ by more 
than an arbitrary cutoff value to be differentially expressed.  
A two-fold difference  is often chosen.

Fold change is not a statistical test.

Fold change is the simplest method



For gene j, let Hj = 0 denote that the null hypothesis of no 
association between its expression level and its class 
membership holds, where (j = 1, …, N).

Hj = 0 Null hypothesis for the j th gene holds.
Hj = 1 Null hypothesis for the j th gene does not hold.

Retain Null Reject Null

Hj = 0 type I error

Hj = 1 type II error 

Test of a Single Hypothesis



Gene Statistics: Two-Sample t-Statistic
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Multiplicity Problem

Perform a test for each gene to determine the statistical 
significance of differential expression for that gene.

Further:  Genes are co-regulated, subsequently there is 
correlation between the test statistics.

Problem: When many hypotheses are tested, the probability 
of a type I error (false positive) increases sharply with the 
number of hypotheses.



Methods for dealing with the Multiplicity Problem

• The Bonferroni Method
controls the family wise error rate (FWER) i.e.
the probability that at least one false positive error will be 
made

• The False Discovery Rate (FDR)
emphasizes the proportion of false positives among the 
identified differentially expressed genes.

§ Too strict for gene expression data, tries to make it 
unlikely that even one false rejection of the null is made, 
may lead to missed findings

§ Good for gene expression data – says something about 
the chosen genes



)hypotheses (rejected#
positives) (false#FDR »

The FDR is essentially the expectation of the 
proportion of false positives among the identified 
differentially expressed genes.

False Discovery Rate 
Benjamini and Hochberg (1995)



Two-component mixture model
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differentially expressed, and 01 1 pp -=
is the proportion that are.

Efron  et al. (2001)



Two-component mixture model
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is the posterior probability that gene j is not 
differentially expressed.



1. Form a statistic wj for each gene. A large positive 
value of wj corresponds to a gene that is DE.

Procedure

2. Fit to w1,...,wN a mixture of two normal densities 
with the 1st component as a standard normal - genes 
that are not DE.  Assume that wj have been transformed
so that they are approx. normally distributed e.g for the 
ANOVA statistic F (Broet et al., 2004). 

Wj

3.  Let   0(wj) denote the (estimated) posterior probability 
that gene j belongs to the first component of the mixture. 

t̂



0(wj)   c0,t̂ £

where

then this decision minimizes the (estimated) 
Bayes risk

If we conclude that gene j is differentially 
expressed if:



Estimated FDR

where



Hedenfalk Breast Cancer Data

Hedenfalk et al. (2001) used cDNA arrays to obtain gene 
expression profiles of tumours from carriers of either the 
BRCA1 or BRCA2 mutation (hereditary breast cancers), as 
well as sporadic breast cancer.

We consider their data set of M = 15 patients, comprising 
two patient groups: BRCA1 (7) versus BRCA2 - mutation 
positive (8), with N =  3,226 genes.

The problem is to find genes which are differentially 
expressed between the BRCA1 and BRCA2 patients.

Hedenfalk et al. (2001) NEJM, 344, 539-547



Fit

to the N values of wj (based on pooled two-sample t-
statistic)
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j th gene is taken to be differentially expressed if:
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Two component model for the Breast Cancer Data



c0 Nr

0.5 1702 0.29

0.4 1235 0.23

0.3 850 0.18

0.2 483 0.12

0.1 175 0.06

RDF ˆ

Estimated FDR for various levels of c0



Significant Genes (Hedenfalk Breast Cancer Data)

•175 genes selected as significant by us

•137 of these over-expressed in BRCA-1 relative to 
BRCA-2, including MSH2 (DNA repair), 

PDCD5 (apoptosis)

Storey and Tibshirani (2003) PNAS, 100, 9440-9445

Compare Storey and Tibshirani (160 genes) 
and Hedenfalk (176 genes), gives 23 genes 
unique to our set.



Uniquely Identified Genes

Gene Identifier Functional Class
ITPK1, NALP1, GADD34
MAPK6
GATA3, TLE1, HDAC2, GTF2B
ANXA1
COL5A1, ACTB1
EIF2S2
PRKACA, CSTB
OXCT1, POX1

Cell death
Cell cycle
Transcription
Cell-to-cell signalling
Cell growth/adhesion/motility
Protein synthesis
Protein modification
Metabolism



SAM (v. 2) Method for finding DE genes

• 210 genes selected as significant with an FDR of 5%

• Compare to our 174 genes, 152 common genes

• Compare to 160 (Storey and Tibshirani), 132 common

SAM method of Tusher et al. (2001) PNAS, 98, 5116-5121



• Mixture-model based approach to finding DE genes 
can yield new information

• Gives a measure of the posterior probability that a 
gene is not DE (i.e. a local FDR rather than global)

• Can be used in the spirit of the q-value, to bound 
the FDR at a desired level

Conclusions 



Extra Slides



Accept Null Reject Null Total

Null True N00 N01 N0

Non-True N10 N11 N1

Total N - Nr Nr N

Possible Outcomes for N Hypothesis Tests

FWER is the probability of getting one or more
false positives out of all the hypotheses tested:

}1{prFWER 01 ³= N



Bonferroni method for controlling the FWER

Consider N hypothesis tests:

H0j versus H1j, j = 1, … , N

and let P1, … , PN denote the N P-values for these tests. 

The Bonferroni Method:

Given P-values P1, … , PN reject null hypothesis H0j if 

Pj < a / N . 



Accept Null Reject Null Total

Null True N00 N01 N0

Non-True N10 N11 N1
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}0FDR/pr{ >= rN

Positive FDR



Benjamini-Hochberg (BH) Procedure

Controls the FDR at level a when the P-values following 
the null distribution are independent and uniformly distributed.

(1) Let                                 be the observed P-values.

(2) Calculate .

(3) If       exists then reject null hypotheses corresponding to

. Otherwise, reject nothing.
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where

Bayes Decision Rule

101010)1(Risk ecec pp +-=
Where   e01 is the probability of a false positive and 
e10 is the probability of a false negative.



Suppose t0(w) is monotonic decreasing in w. Then
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Suppose t0(w) is monotonic decreasing in w. Then
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For a desired  control level a, say a = 0.05, define

{ }a£= )(ˆminarg0 wRDFw
w

(1)

If
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-
-p is monotonic in w, then using (1)

to control the FDR  [with             and              taken 
to be the empirical distribution function] is 
equivalent to using the Benjamini-Hochberg 
procedure based on the P-values corresponding 
to the statistic wj.

1ˆ0 =p )(ˆ 0wF



The SAM Method

Use the permutation method to calculate the null 
distribution of the modified t-statistic (Tusher et al., 2001).

The order statistics t(1), ... ,  t(N) are plotted against their null 
expectations above. 

A good test in situations where there are more genes being 
over-expressed than under-expressed, or vice-versa.


