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Abstract: Effective operation of a microgrid depends critically on accurate forecasting of its compo-
nents. Recently, internet forecasting competitions have been used to determine the best methods for
energy forecasting, with some competitions having a special focus on microgrids and COVID-19
energy-use forecasting. This paper describes forecasting for the IEEE Computational Intelligence
Society 3rd Technical Challenge, which required predicting solar and building loads of a microgrid
system at Monash University for the month of November 2020. The forecast achieved the lowest
error rate in the competition. We review the literature on recent energy forecasting competitions and
metrics and explain how the solution drew from top-ranked solutions in previous energy forecasting
competitions such as the Global Energy Forecasting Competition series. The techniques can be
reapplied in other forecasting endeavours, while approaches to some of the time-series forecasting are
more ad hoc and specific to the competition. Novel thresholding approaches were used to improve
the quality of the input data. As the training and evaluation phase of the challenge occurred during
COVID-19 lockdown and reopening, the building demand was subject to pandemic-related effects.
Finally, we assess other data sources which would have improved the model forecast skill such as data
from different numerical weather prediction (NWP) models, solar observations, and high-resolution
price and demand data in the vicinity of the campus.

Keywords: time-series forecasting; solar forecasting; renewable energy; random forests

1. Introduction

The efficient operation of a microgrid requires accurate energy forecasting and effective
optimisation. This is referred to as the “predict + optimise” problem [1].

The same principles apply to the forecasting and optimisation of larger grids. New
microgrids often operate entirely on renewable energy, and the modelling of such grids
provides important lessons for the operation of national grids where rapid decarbonisation
must occur. In this paper, we study a particular microgrid with a collection of buildings,
associated solar panels and batteries.

Studying such a problem deeply and investigating which approaches worked best,
and conducting a review of possible data sources can help many parties, such as forecasters,
grid operators, and future competition organizers. In the last decade, several competitions
have been organized, covering both the narrow forecasting-only problem and the larger
“predict + optimise” problem.

Here, we describe the approach used in a competition to model the Monash Uni-
versity Microgrid, focussing on the forecasting aspect of the problem. In 2021, the IEEE
Computational Intelligence Society ran a “predict + optimise” competition from 1 July to 3
November online [2].

The geographical context of the competition was in the city of Melbourne, in the state
of Victoria, Australia. In this microgrid, the electricity demand at a set of six buildings is
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met by a set of six solar installations, while a set of batteries with differing capacities and
efficiency rates may be charged or discharged to meet requirements. A related optimisation
problem in the competition concerned how the energy requirements could be met at lowest
cost using the batteries and foreknowledge of electricity prices.

The competition ran in two phases. In Phase 1 from 1 July to 11 October 2021, com-
petitors were able to upload forecasts to a public “leaderboard” which would calculate
the Mean Absolute Scaled Error (MASE) [3] of each the 12 time series for October 2020.
The mean of these 12 MASE values would then be displayed on the leaderboard. At the
end of Phase 1, the load and solar data of October 2020 (the 12 time series) was made public,
and Phase 2, based on forecasting the month of November 2020, began.

From 13 October to 3 November 2021, competitors could upload forecasts, but the
leaderboard only provided an indication of whether forecasts were better, worse, or the
same as a reference forecast of all zero values. On 3 November the MASE and energy cost
figures were released, while the energy data were released on 6 December 2021.

In this paper, we present the approach used to win the forecasting section of the com-
petition, and describe the novel contributions (for example, thresholding and combining
daily and hourly input data) which led to the model outperformance. We explain how
the competition fits in the context of energy-forecasting competitions, in particular with
reference to COVID-19 effects, and investigate how other data sources could have improved
the results.

We review the recent literature relevant to the competition in Section 2. Section 3
describes the data available in the competition, a naive forecast, and the general approach
used; Section 4 examines the specific case study of the competition, and Section 5 provides
the results. Section 6 is a “post-mortem” discussion of what other predictor variables may
be useful in this kind of forecasting, with implications, and Section 7 concludes the paper.

2. Literature Review

We consider literature from well-known energy forecasting competitions (largely the
GEFCOM series and Kaggle-based competitions), other energy-forecasting ideas from
the literature, and concerning energy usage and forecasting during COVID-19. These
competitions are relevant as techniques specific to some of them could be applied to the
competition described here.

2.1. Energy-Forecasting Competitions and Principles

To develop an accurate forecast for a specific case such as the microgrid under consider-
ation, it is important to review past competitions and derive lessons from them. The Global
Energy-Forecasting Competition (GEFCOM) has been run three times (2012, 2014 and 2017)
with themes of forecasting electricity load, solar, wind and price, with both point and
quantile forecasting.

The 2014 and 2017 iterations of GEFCOM [4,5] provided strong evidence that random
forests were one of the most successful techniques in energy forecasting (or at least in
related competitions). For example, in the solar track of GEFCOM 2014, three of the top
five entries used quantile regression forests or random forests as part of the model. In the
GEFCOM 2017 competition for hierarchical load forecasting, three of the top seven entries
used quantile regression-based models. For the sake of saving time, we used quantile
regression forests for both building and solar modelling.

Concerning GEFCOM 2012, Table 2 of [6] summarised the methods used in the hierar-
chical load forecasting track plus a “Vanilla Benchmark” using multiple linear regression
(MLR). Linear regression is a simple method for relating weather and temporal variables to
the output variable (load). Clearly, the relationship between input weather variables such
as temperature and load is non-linear requiring transformation such as the use of heating
and cooling degree days; and similarly for the time of day/Julian date temporal variables.
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Ten methods were given, of which three used MLR or ensembles featuring MLR, three
used neural networks, and one (Chaotic Experiments) used random forests. Data cleaning
was a key challenge of the competition.

The winning team [7], used multiple linear regression, with key steps of combining
models from multiple weather stations, outlier removal and public holiday treatments.
A quadratic function was used to account for the non-linear relationship of temperature
with load. A separate model was built for each zone and hour of the day. Then the
temperature for each zone was modelled in terms of various weather station inputs and
some holidays are treated as weekend days. Two tracks of the GEFCOM 2014 competition
were particularly relevant, as they covered load and solar forecasting (GEFCom2014-L
and GEFCom2014-S). The competition assessed probabilistic, rather than point forecasting.
Additionally, the weather data provided was from ECMWF, as in the competition described
in this paper.

The winning team in the load track [8] used a quantile generalized additive model to
win the load and price forecasting tracks after testing random forests, gradient boosting
machines and generalized additive models.

We considered generalized additive models for our work, but random forest models
achieved better performance with little training required.

A quantile regression forest model was used by [9] as part of their approach; using
all the ECMWF ERA5 variables provided, plus temporal variables: hour, day of year,
and month.

The 2017 competition focussed on hierarchical probabilistic load forecasting; as in
previous GEFCOM instances, quantile regression forests, gradient boosting machine, neu-
ral networks, multiple linear regression and various ensembles were used. However,
the weather variables were not provided by ECMWF and so lessons cannot be applied
directly here as for the 2014 instance. Of the solution papers, ref. [10] provided labelling
ideas for each time series, which proved to be a useful concept for the IEEE challenge.

Another competition run on Kaggle was described in [11] using machine learning for
solar forecasting. This was an early example of a competition using NWP data in the US
(specifically, Oklahoma) for solar forecasting; gradient boosting regression trees were found
to outperform other methods.

Other papers have focussed on forecasting day-ahead load and solar generation in
large electricity markets using weather forecast data.

In the context of forecasting the Australian National Electricity Market [12] wrote about
forecasting day-ahead electricity load. They used a heating/cooling degree day approach,
with lagged and leading variables. Linear regression and piecewise linear modelling of
temperature effects were used for a regional electricity forecast in Australia. The approach
was refined in [13] to forecast quantiles. They noted that important factors for forecasting
were the seasonality of load, temperature and special day effects. Lagged load effects were
noted to be critically dependent on the day of the week.

A paper on solar forecasting [14] noted that the commonly used ensemble technique
in wind and solar power forecasting was to blend weather data from different sources.
This was important in the competition studied here, with some data hourly and other data
available on a daily resolution.

Since the IEEE-CIS competition, papers from winners have appeared describing their
forecasting and optimisation approaches [15–21]. Two competitors used LightGBM (gradi-
ent boosting machines), two used random forests or quantile regression forests, one used
ResNet/Refined Motif, and two used ensemble approaches (one involved neural networks
and the other random forests, gradient boosting machines, and regression). Further details
may be found in [2] while the effect of different error metrics is examined in [22].

For the design of a forecasting competition, it is important to choose a correct error
metric (in this competition, MASE or Mean Absolute Scaled Error) and to avoid using
training data in the evaluation phase.
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Forecast evaluation methods were examined in [23]. The authors discussed data
leakage, where training data are used in the test or evaluation set. In the context of this
competition, data partitioning was applied to retain the temporal order of the time series,
splitting it across phases. Thus, the month of October 2020 was used in Phase 1 to allow
competitors to refine their models while November 2020 was used in Phase 2 for the
evaluation. A possible issue with non-stationarity occurred; that is, the “return to campus”
effect observed in November 2020 had not been seen since the March 2020 lockdown.

In a similar manner to leakage, we discuss extra sources of data in Section 5 which
could have been used as input data by the competition designers or by unethical competi-
tors. In the GEFCOM competition run on Kaggle, the team which initially achieved the
lowest score exploited “some external utility data” in their final submission [24].

The authors cite [25,26] as arguing that point forecast evaluation alone is insufficient
for all end use cases. The second paper proposes assessing a range of point forecast error
measures in competitions, in the context of discussing the results of the “M4” competi-
tion [27].

Figure 11 and Table 1 of the paper provide a large flowchart for point forecasting.
For example, RMSE or “root mean squared error” and MAE/MASE or “mean absolute
(scaled) error” are discussed. MAPE is inappropriate for time series containing zero values,
such as solar time series used in the competition. Thus, it was appropriate for the multiple
time series containing non-stationarities of the seasonality type, to choose MASE as a
forecast metric.

MASE is calculated as defined in [3], as follows. Let Yi, i = 1, . . . , n be the observations
at time t and Ft be the forecast at time t, with the forecast error et = Yt − Ft. Then calculate
the scaled forecast errors qt as

qt =
et

1
n−1 ∑n

i=2 |Yi −Yi−1|
(1)

with MASE = mean(|qt|).
A detailed study on the theory and practice of forecasting was published in [28].

In particular, one subsection (3.4.3) gives a summary of recent references based on the time
horizon of the forecasts. It is noted that 15 min forecasts (as seen in the challenge) are
classified as “VSTLF” (i.e., Very Short-Term Load Forecast) while in MTLF (medium-term
load forecasts) one may forecast electrical peak load, which is relevant for the optimisation
phase of the challenge. VSTLF is stated to require meteorological data and day type
identification codes.

Recent systematic reviews of electricity load forecasting models have been provided
in [29–32]. The paper [32] recommended extreme gradient boosting as a technique, studying
Panama’s electricity load over the last 5.5 years, using temperature, humidity and temporal
variables. Various other single approaches have been examined in other papers [33–38].
For example, deep neural networks, deep learning, combinations of stationary wavelet
transforms, neural networks, hybrid models, PSO (particle swarm optimisation) and ensem-
ble empirical mode decomposition were examined. An extensive review of ML methods
for solar forecasting was given in [39], which noted that SVM, regression trees and random
forests gave similar results and ensemble methods always outperformed simple predictors.

2.2. COVID-19 Energy Usage

During the period of COVID-19 since December 2019, there have been many papers
published about the effect of “lockdowns” on energy use in buildings. More specifically,
several papers have been published on energy use in universities in the UK, Spain, Malaysia
and Australia explaining the effect of full and partial lockdowns and reopenings, and what
kind of loads are running irrespective of whether a lockdown is in place. For a more
general survey of how COVID-19 affected household energy usage in an Australian context,
see [40].
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One study [41] looked at 122 buildings in Griffith University, Australia. The buildings
were across five campuses in the Gold Coast, Australia and compared the “COVID-19”
year February 2020 to February 2021 to the “pre-COVID” year February 2019–February
2020. Learning and administration moved off campus while research remained on campus,
saving 16% of energy year on year. Air-conditioning reduction accounted for half of the
energy-use change. In agreement with [42] it was found that research buildings have highest
energy-use intensity and academic offices the least. They noted that it was important to
assess the special occupancy conditions of these buildings and not model them as regular
commercial or residential buildings.

Some researchers required specialised equipment and could not work from home.
The energy savings may have been caused by reduced hours of operating building equip-
ment, such as HVAC (heating ventilation and air conditioning) which was shut down in
some types of buildings. In the location of the university (with a sub-tropical climate) there
was high demand for cooling in summer but little demand for heating in winter.

Examining the University of Almeria in Spain, ref. [43] found that the library category
was most influenced by shutdowns and the research category was least influences. Uni-
versity campuses were noted to use energy in a different way from residential buildings,
with differing occupancy rates, HVAC, lighting, computers and so on. UPS, fridges and
freezers, security systems, exterior lighting and telecommunications could not be turned
off and were characterized as “heavy plug load”. Thus, building by building modelling is
appropriate, which was seen in the competition. Library, sport, and restaurant buildings
were affected strongly at different times.

At the BarcelonaTech university campus [44] studied 83 buildings, identified the main
use case for each, calculated heating and cooling temperature effects, and showed estimated
occupancy. They again noted that research buildings experienced the least proportion of
avoided energy use during lockdown. Further savings were not possible due to some
buildings having a low level of centralised controls.

The study [45] examined a 7-level research complex building in Malaysia. They noted
a strong weekend/weekday usage pattern with centralised air conditioning during work
hours and studied the effects of partial and complete lockdowns.

In Scotland, ref. [46] examined public buildings during 2020 and 2021 in the context of
“lockdown fatigue”. Library buildings were noted as offering higher EU (electricity use)
and EUI (electricity use intensity) reduction potential.

In summary, the research on universities could not be directly applied to the competi-
tion as it was unknown which classification the buildings fell into. However, the choice of
input data to the model (that is, the starting point chosen for each building’s data) had a
large effect on the performance of the model.

A competition was organized by IEEE [47] requiring competitors to forecast day-ahead
electricity use in March and April 2021 from a “metropolitan electric utility”. Four years
of data and weather variables were supplied (historical and forecast). Out of 20 teams
that finished the competition, only nine had a “significantly lower MAE” compared to
the persistence-based benchmark load forecast. The persistence forecast set Sunday and
Saturday load to the previous Sunday or Saturday; Monday and Tuesday to the previous
Friday, and Wednesday to Friday from two days prior. The top teams used ensembles of
models which were weighted based on the recent performance of individual models.

The competition organizers noted that multi-model approaches were dominant,
and this dominance had also been noted in the recent M5 competition [48]. They con-
cluded that the winning models were adaptable to sudden changes in conditions such as
lockdowns, but that it was not clear if the models were robust or could be generalized to
other circumstances.

The winning team published details of their approach in [49]. They used an ensemble
of 72 models including linear regression, GAMs, random forests, and MLPs, using an
“online robust aggregation of experts”. The aggregation method is more fully described
at [50] in the context of lockdowns in France.
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The third placed team [51] explained their approach involving cleaning of weather
data using linear interpolation, lagged load effects, outlier detection and adjustment for
holidays. Their ensemble of 674 models incorporated STL decomposition with exponential
smoothing, an AR(P) time series model, GAMs, and regression models.

The organizers stressed that publication of the methods was critical to maximize
benefit to society, in contrast with commercial data science competitions.

3. Materials and Methods

In this section, we describe the data provided by external sources and by the competi-
tion organizers. The external data consists of weather data from two different meteorologi-
cal organizations and electricity price data from the grid operator in Australia.

We then provide a general description of the random forest algorithm, and give a
baseline error rate based on various “naive” forecast approaches.

3.1. Prediction Data

Competitors in the challenge were permitted to use external data from two sources:
the Australian Bureau of Meteorology (BOM) weather data available through manual
download from Climate Data Online [52] and the European Centre for Medium-Range
Weather Forecasts (ECMWF) [53,54] data provided by OikoLab [55]. Thus, the competitors
were allowed to use “perfect forecast” weather data. From the BOM data, we used only the
“daily global solar exposure” data, although daily minimum and maximum temperatures
and daily rainfall data were available. The European Centre model is known as ERA5 and
provides hourly historical weather (reanalysis) data.

The BOM “daily global solar exposure” data is measured from midnight to midnight
each day, and is the total solar energy for a day falling on a horizontal surface. For the
stations used in this study, values ranged from 1.3 to 32.3 MJ per square metre in 2019
and 2020. For the competition, these data were available at three nearby sites—Oakleigh,
Olympic Park, and Moorabbin (BOM sites 86077, 86088 and 86338, respectively).

Table 1 lists and describes the variables used to model solar output in several re-
cent papers and this competition: GEFCOM [4,56,57], PVLIB [58], and PVCompare [59].
The descriptions come from the ECMWF “GRIB Parameter Database” [60]. Their use in
competitions is shown in Table 2.

Table 1. Description of ECMWF ERA5 variables used in solar models.

Short Name Description Units

TCLW Total column cloud liquid water kg m−2

TCIW Total column cloud ice water kg m−2

SP Surface pressure Pa
TCWV Total column vertically integrated water vapour kg m−2

MSL Mean sea level pressure Pa
R Relative humidity %

TCC Total cloud cover (0–1)
10U 10 m U wind component m s−1

10V 10 m V wind component m s−1

2T 2 m temperature K
2D 2 m dewpoint temperature K

SSRD Surface solar radiation downwards J m−2

STRD Surface thermal radiation downwards J m−2

TSR Top net solar radiation J m−2

LCC Low cloud cover (0–1)
TCO3 Total column ozone kg m−2

TISR TOA incident solar radiation J m−2

TP Total precipitation m
FAL Forecast albedo (0–1)
FDIR Total sky direct solar radiation at surface J m−2

CDIR Clear-sky direct solar radiation at surface J m−2

SSRDC Surface solar radiation downward clear-sky J m−2
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One study [61] used the higher-resolution ERA5-Land data, which provides 0.1 degree
grid resolution coverage of the Earth, and four of the “PVLIB” variables i.e., wind speed (u
and v), surface solar radiation downward, and 2 m temperature.

The PVLIB source code [62] which derives values from the European Commission’s
Photovoltaic Geographical Information System (PVGIS) [63] takes into account global
horizontal irradiance, direct normal irradiance, diffuse horizontal irradiance, the plane of
array irradiance (global, direct, sky diffuse, ground diffuse), solar elevation, air temperature,
relative humidity, pressure, wind speed and direction. The PVGIS data is itself partially
dependent on ECMWF data and the variables chosen are similar to those listed in Table 2.

Table 2. Comparison of ECMWF ERA5 variables used in solar models.

ID Name GEFCOM IEEE-CIS Espejo Yang PVLIB PVCompare
2014 [2] et al. et al. [58] [59]
[4] [56] [57]

78 TCLW X
79 TCIW X

134 SP X X
137 TCWV X X
151 MSL X
157 R X X
164 TCC X X
165 10U X X X X X
166 10V X X X X
167 2T X X X X X X
168 2D X X
169 SSRD X X X X X X
175 STRD X X X
178 TSR X
186 LCC X
206 TCO3 X
212 TISR X
228 TP X X
243 FAL X

228021 FDIR X X X X
228022 CDIR X
228129 SSRDC X

# 12 8 5 14 5 6

3.2. Building and Solar Data
3.2.1. Solar

As a rule of thumb, a 4 kW system in Melbourne produced 14.4 kWh of solar energy
daily, according to an estimate by Australia’s Clean Energy Council [64]. Equivalently, this
can be expressed as a “capacity factor” of 15.0% relative to the size of the system. In the
centre of Australia in Alice Springs, such systems can produce 20.0 kWh per year; that
is, a capacity factor of 20.8%. This can also be expressed in a “kWh/kW” form—that is,
3.6 kWh/kW in Melbourne and 5 kWh/kW in Alice Springs.

The solar installations, named Solar0 to Solar5, appeared to be of sizes of approximately
8 to 50 kW. The data for Solar0 only began in April 2020, but the estimated capacity factors
of each installation (using data up to and including October 2020) ranged from 15.9%
(Solar5, max 40.4 kW) to 23.5% (Solar1, max 12.7 kW).

For Solar0, 86% of the time-series values are non-zero; for Solar5, this proportion is
30%; while for the others, the value ranges from 38% to 48%. It seemed that some kind of
cleaning or thresholding approach could be used to improve performance for forecasting
Solar0 and Solar5 values and this proved to be the case.
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A Q-Q plot of the six solar installations, using all available data, is shown in Figure 1.
The red line represents Solar1. On closer examination, the kink in this line was found to be
caused by cumulative data in the Solar1 time series in late 2020. Thus, not all the data from
Solar1 could be trusted or used without cleaning. We thresholded the data from Solar1,
Solar2 and Solar3 time series to begin from 22 May 2020. All of the Solar0, Solar4 and
Solar5 time series were used in training, although only hours where at least one period of
generation (of four) was greater than 0.05 kW were used for Solar0 and Solar5 training.
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Figure 1. Q-Q plot of all available solar time-series data.

3.2.2. Buildings

The provided data for the buildings and solar installations began at various dates,
with the earliest data available from “Building 3” on 1 March 2016. The data for some
buildings was very spotty; for example, Building 4 had 46,733 values but 18,946 of the
values were unavailable. The modal and median value for Building 4 (19,621 occurrences)
was 1 kW and all the other values were 2, 3, 4 or 5 kW. A perfect approach for data such
as Building 4 would forecast one of these discrete values as the MASE of every series was
significant for the competition, regardless of size.

We omitted one day in October 2020 from the building training data due to a state
public holiday effect in the data (Friday before Grand Final). It was unclear whether the
public holiday was influencing this day, while November 2020 (the evaluation month) had
no significant public holidays.
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3.3. Naive Forecasts

It is instructive to consider the performance of naive forecasts (for example, persistence-
based or those based on median of each time series for the most recent month).

To develop a persistence-based forecast, we examined the building and solar traces
for November 2019 versus previous data. (We also checked the time series for solar against
previous time series reversed in case seasonality effects were useful). It was quickly
determined that for November 2019, for a “month-ahead” forecast, the best lag period was
30 days (720 h) for the solar and 35 days (840 h) for the buildings, which preserved the
weekend patterns. This was the lag period that generally minimized the sum of squares
of differences, comparing November 2019 to previous time periods of the same length.
The organizers explained that for computing the MASE, they used a 28-day-ahead seasonal
naive forecast (i.e., 2688 15-min periods).

Applying this to the November 2020 forecast, we achieved a mean MASE over the
12 time series of 1.1754. The final leaderboard for Phase 2 contained 14 different forecasts
for Phase 2, of which 10 had a lower MASE than this naive forecast.

Classifying each hour in the data by weekday/weekend type and by hour (i.e., 48 clas-
sifications) and setting each value for November 2020 to the median of the corresponding
hourly/day type value for the last 30 days of October 2020 gave a mean MASE of 1.0754,
while including the day of the week value (i.e., 168 classifications) reduced this to 1.0630.
Nine entries beat this mean MASE.

For the training phase, Phase 1, requiring the prediction of October 2020, the same ap-
proaches give a mean MASE of 1.1504 (persistence forecast), 0.9313 (weekend/weekday and
hour), and 0.9211 (day of week and hour). Of 22 different forecasts on the final leaderboard
for Phase 1, 14 beat the persistence forecast while nine beat the hourly based forecasts.

3.4. Random Forests and Quantile Regression Forests

The initial random forest model was described in [65] as a generalization of tree-based
prediction or classification algorithms. Later, [66] provided an extension of the concept to
carry out regression and provide quantiles as output, rather than a single point.

Random forests grow a large number of trees (for instance, the default in the “random-
Forest” R package is 500 trees) splitting each tree at each node in a random way. At each
node, a random selection of predictor variables (of size known as the “mtry” parameter)
is chosen.

The quantile regression forest paper [66] defines a pair of variables X and Y, a covariate
or predictor variable and a real-valued response variable, respectively. Standard regression
analysis develops an estimate µ̂(x) of the conditional mean of the response variable Y given
a particular value X = x.

The original random forest then provides a point forecast for X = x

µ̂(x) =
n

∑
i=1

wi(x)Yi (2)

where Yi, i = 1, . . . , n are the original observations, k single trees are in use, and θ is the
random parameter vector determining how to split the tree at each node.

wi(x) is the average of a weight vector defined over wi(x, θ) calculated for the new
data point X = x as follows:

wi(x) = k−1
n

∑
t=1

wi(x, θt) (3)

where wi(x, θt) is a weight vector defined for the k trees, 1, . . . , t. Further details may be
found in [66].

Quantile regression forests then develop a conditional distribution function of Y given
X = x, F̂(y|X = x) using these weights wi(x).
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4. Case Study

In this section, we investigate the competition data in detail, and provide pseudocode
for our specific approach, showing the sequential improvement of the error rate over the
period of the competition.

4.1. Initial Investigation

We began by using the generalized additive model as seen in [67], which has also been
used in a similar model for bike-sharing demand using weather and temporal variables [68].
This was to develop an initial feel for how temperature and solar variables in the ECMWF
(ERA5) data set affected each building and solar installation, along with temporal variables
(weekend, time of day, and day of year).

We noticed that the buildings were very different in terms of load on weekend and
public holidays (see Building 1, 3 and 6 in Figure 2), and that temperature and solar (leading
and lagging) were the most critical predictor variables in the models for the buildings and
solar output.

We quickly switched to a random forest model as the focus of the competition was
purely the lowest error rate, rather than explainability or visualization. This also enabled
us to build on the previous experience of [69]. The ranger package [70] in R has provided
multi-threaded random forests with an extension of options over those seen in the original
quantregForest package of [66].

A plot of the building and solar traces for October 2020 (the data held out for Phase 1)
is shown in Figures 2 and 3.
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Figure 2. Building time-series data in kW for October 2020.
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Figure 3. Solar time-series data in kW for October 2020.

The solar traces seemed to be genuine 15 min readings, while Buildings 0 and 3
were series of 15 min values repeated four times each. It appeared that Building 4 and
Building 5 readings were uncorrelated or poorly correlated with any weather or temporal
variables we were provided. Additionally, these time series were missing large numbers
of values, with Building 5 in particular containing only 133 values, of which 76 are the
values 18, 19, 36 or 37 kW. Thus, for the November 2020 forecast, for Buildings 4 and 5, we
simply repeated the median value from October 2020 (i.e., “manual optimisation”); 1 kW
and 19 kW, respectively. This observation saved time in the prediction development and
iterative process as the observations for only the other four, rather than all six, buildings
were used in the combined training data.

We thresholded values from Building 0 and 3 as some of them appeared to be large
outliers. Building 0 and 3 upper bounds were set to 606.5 and 2264 kW while the Building
3 lower bound was set to 193 kW.

A “maximal” approach was used; that is, for each building time series, the training data
start date decreased month by month as far as possible until the error rate started increasing.
For the building time series, this was the months of June, February, May, and January 2020
for Buildings 0, 1, 3 and 6, respectively, i.e., for Building 0, the training data for Phase 1
consisted of June to September 2020 inclusive, while, for Phase 2, the training data were
from June to October 2020 inclusive. It was assumed that all the most recent data should
be included in training. We attempted to add a recency bias for newer data following [71]
using exponential decay in the ranger training, but this was unsuccessful.
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The approach chosen here was the most difficult and most purely subjective choice
made by us in the competition. It was assumed that a full reopening after COVID-19
restrictions were lifted (in October 2020) would not result in a return to pre-2020 levels
of building energy use. For example, the maximum Building 3 energy use observed was
683 kW after May 2020 but there were observations of over 1000 kW on 19 March 2020.
The last observation over 700 kW was on 27 March 2020 after which it was assumed stricter
COVID-19 lockdowns commenced.

4.2. Forecast Code

The forecast code was built in R due the availability of useful packages such as ranger,
xts, and lubridate.

The following Algorithm shows the pseudocode loop we used for the model develop-
ment in Phase 1. The same R code was used for Phase 1 (October) and Phase 2 (November)
with only the phase parameter changed.

Feature selection was generally performed manually using our knowledge of other
competitions and experience in solar and energy forecasting, rather than an automated
step-wise process of addition and subtraction of variables. This was motivated by time
pressure of the competition. Initially all groups of buildings and solar installations were
trained together, and the highest variables in terms of importance across all the group
were extracted. The idea was to avoid overfitting and save time by choosing only directly
relevant variables and testing only against a proxy for the evaluation metric—the MASE of
Phase 1. In a production environment the validity of these assumptions should be verified
through cross-validation.

5. Results

The evaluation metric for the competition was the MASE error rate; in this section, we
show how we were able to reduce this during the competition by the approaches described,
in both the evaluation and training phases.

After performing feature selection for each building and setting the value of Building
4 to be 1 kW for the whole month of October, we achieved an error rate (MASE) for Phase 1
of 0.6528. This required the selection of start months for the buildings and solar data.

By the end of Phase 1, we had lowered this to 0.6320 by incorporating median fore-
casting of the time series (that is, the 50th percentile in quantile regression) and adding in
BOM solar data.

On 13 October, the competition organizers released individual Phase 1 time series and
we began investigating how the MASE value was derived using the provided data and
R program.

During this improvement process, we observed that forecasting Solar0 and Solar5 as
linear combinations of the other solar variables was working better than the actual Solar0
and Solar5 prediction, that some pairs of solar series were much more highly correlated
than other pairs, and that buildings 3/6 were also highly correlated. This caused us to
attempt various groupings of solar and building training data as explained in Algorithm 1.

We added the following improvements sequentially through experimentation as each
change seemed reasonable, as we considered each change would improve the error rate for
Phase 2 (November 2020) as well. The possibility of overfitting seemed minimal, as each of
the changes could be justified with reference to the closest month of October 2020.

1. Added cloud cover variables ± 3 h. The effect may be seen in Figure 4 with the
predicted solar (black line) beginning to closely match the actual solar (red line)
during the day. (MASE 0.6243, 16 October)

2. Selected solar data from beginning of 2020 instead of from day 142 (22 May). (MASE
0.6063, 17 October)

3. Selected start month (0–8) for each of four building series from 2020, added all possible
weather variables, set Building 5 equal to median training value 19 kW (MASE 0.5685,
18 October)
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4. Fixed up Solar5 data by filtering out values less than 0.05 kW. (MASE 0.5387, 24 October)
5. Trained all solar and building data together following [10]. A building forecast with

averaged hourly values may be seen in Figure 5; the weekend/weekday pattern is
clear (1 October is a Thursday). (MASE 0.5220, 30 October)

6. Fixed up Solar0 data by same filtering as for Solar5. (MASE 0.5207, 31 October)
7. Added in separate binary decision variables for each day of the week. (MASE 0.5166,

2 November)

Algorithm 1: Model development for Phase 1.

1. Select a time series or group of time series from the 12 series
2. Perform adjustment:

(a) Adjust start and end dates of training data
(b) Perform thresholding of energy values (effective for Solar 0 and Solar 5

series)
(c) Add or remove predictor variables (e.g., leading and lagging weather

variables, BOM variables)
(d) Adjust grouping of solar or buildings
(e) Adjust random forest parameters (ntrees and mtry)

3. If the adjustment decreases the MASE for Phase 1, then retain it; else discard it
4. Go to Step 1.
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Figure 4. Solar 0 Forecast vs Actual (kW)—Phase 1 (1–7 October 2020).
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Figure 5. Building 1 Forecast vs Actual (kW)—Phase 1 (1–7 October 2020).

We were expecting a similar MASE for Phase 2; however, the “reopening” effects
of lockdown appeared to result in a reversion to historic usage patterns in some of the
buildings, which diverged from our forecast.

Naturally this “reopening” affected all the results of all competitors. In an actual
production environment, instead of having a “month-ahead” forecast, the forecasts would
be day-ahead and able to rapidly adjust to reopening effects.

Although we do not know the types of the six buildings used in the competition, we
surmise that in November 2020 the air-conditioning use of some of them began to revert to
the long-term mean. Thus, our approach of choosing different starting months for each
building to minimize MASE vis-a-vis October 2020 led to model outperformance.

Model Description

We summarise the predictor variables used in the building and solar modelling and
discuss their relative importance.

A list of the 74 predictor variables used in the model for Buildings 0, 1, 3 and 6 is in
Table 3. Example values are given for each variable. Similarly, the 39 predictor variables
used in the Solar model are shown in Table 4.

These variables are being used to predict the quarter-hour energy usage for each of
the buildings; that is, a different model is used for each quarter-hour offset (:00, :15, :30 and
:45 of each hour). In the final model, all the solar and building variables (for Buildings 0, 1,
3 and 6) were normalized using the maximum value found in the training data.

The other weather variables (t2m, d2m, wind, MSLP, R, SSRD, STRD and TCC) are
the variables provided by OikoLab via the ERA5 model: 2 m temperature, 2 m dewpoint
temperature, wind speed, mean sea level pressure, relative humidity, surface solar radiation
downward, and surface thermal radiation downward (as seen in Tables 1 and 2).
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The “wh” variable identifies the building being predicted, analogously to the same
variable in [10]. Variable name postfixes refer to leading and lagging variables one, two or
three hours from the period. Postfixes of 24, 72 and 48 are used for building training—the
temperatures 24, 72 and 48 h ago based on the market demand modelling of [12]. These
proved to be significant variables in the building energy forecasting.

The variables labelled Moorabbin, Oakleigh and Olympic are repeated values for
the BOM daily solar global exposure variables at three sites, i.e., in each quarter hour,
the variable is assigned the daily solar global exposure for that day, as the value is measured
from midnight to midnight.

The variables “sin_hr” and “sin_day” refer to the Fourier terms related to the hour
of the day and the day of the year (Julian date). Thus, sin_hr = sin( 2πhr

24 ) and sin_day =

sin( 2πday
365 ) and similarly for the cosine term. These terms model the diurnal and annual

cycle in the building energy usage and solar generation. Including these temporal terms,
plus the weekday/weekend Boolean variable for the buildings, gives a good first approxi-
mation to the building energy usage and solar generation. Competition winning entries
such as [72], from the 2014 Global Energy-Forecasting competition, used these terms in
both the solar and wind forecasting tracks.

Other variables are binary variables for weekend (“wd”), Monday/Friday (“wd1”),
Tuesday/Wednesday/Thursday (“wd2”) and named variables for each day of the week.

For the random forest parameters, each forest was trained with 2000 trees (increased
from the default ranger value of 500). The mtry parameter was set to 43 for the forests
training buildings 0, 1, 3 and 6 together; to 14 for the forests for Building 1 only; 19
for the forests for Building 6; and 13 for the forests for the solar installations. In ranger,
the default mtry parameter is the (floored) square root of the number of independent
variables. The variable count is 74 for buildings and 39 for solar; thus, the default mtry
parameters would be 8 and 6, respectively, significantly differing from the competition
values.

Table 3. Building predictor variables.

wh 6 t2m_lead1 10.2 strd_lead1 319 rh_lag1 0.87 sin_hr 0
t2m 9.7 t2m_lead2 10.7 strd_lead2 328 rh_lag2 0.87 cos_hr 1
d2m 7.3 t2m_lead3 10.6 strd_lead3 334 rh_lag3 0.86 wd 0
wind 5 t2m_lag24 13.8 wind_lag1 4.6 rh_lead1 0.82 wd1 1
mslp 1005 t2m_lag24 13.4 wind_lag2 4.4 rh_lead2 0.8 wd2 0

rh 0.85 t2m_lag72 12.3 wind_lag3 6.3 rh_lead3 0.83 sunday 0
ssrd 59.4 ssrd_lag1 15.4 wind_lead1 5.7 cloud_lag1 1 monday 1
strd 338.4 ssrd_lag2 1.1 wind_lead2 5.9 cloud_lag2 1 tuesday 0

cloud 1 ssrd_lag3 0 wind_lead3 5.8 cloud_lag3 1 wednesday 0
Moorabbin 4.5 ssrd_lead1 182 d2m_lag1 7.6 cloud_lead1 0.97 thursday 0
Oakleigh 2.8 ssrd_lead2 244 d2m_lag2 7.7 cloud_lead2 0.99 friday 0
Olympic 2.6 ssrd_lead3 152 d2m_lag3 7.9 cloud_lead3 0.99 saturday 0
t2m_lag1 9.7 strd_lag1 344 d2m_lead1 7.3 mslp_lag1 1005 sin_day 0.5
t2m_lag2 9.8 strd_lag2 347 d2m_lead2 7.3 mslp_lead1 1005 cos_day −0.87
t2m_lag3 10.1 strd_lag3 345 d2m_lead3 7.8 hr1 0 x1 0.63

Table 4. Solar predictor variables.

wh 0 t2m_lag2 12 ssrd_lead3 0.66 cloud_lead1 0.48
t2m 12 t2m_lag3 12 strd_lag1 318 cloud_lead2 0.58
mslp 1018 t2m_lead1 12 strd_lag2 332 cloud_lead3 0.74
ssrd 203 t2m_lead2 11 strd_lag3 347 mslp_lag1 1017
strd 321 t2m_lead3 10 strd_lead1 311 mslp_lead1 1018

cloud 0.37 ssrd_lag1 221 strd_lead2 308 sin_hr 0.97
Moorabbin 8.8 ssrd_lag2 172 strd_lead3 303 cos_hr 0.26
Oakleigh 8 ssrd_lag3 173 cloud_lag1 0.56 sin_day 0.66
Olympic 6.6 ssrd_lead1 145 cloud_lag2 0.81 cos_day −0.76
t2m_lag1 12 ssrd_lead2 54 cloud_lag3 0.94 x1 0

Out of the individuals/teams who made submissions to the evaluation Phase, our
entry had the lowest MASE for Phase 2 of 0.6460.
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The outperformance is due to many factors including the fine-tuning described above
in Section 4.2. We believe that relative to other competitors the approaches of thresholding
each building input data set differently, modelling all solar time series together, and includ-
ing both daily and hourly weather data in the model led to its strong outperformance.

It is difficult to pinpoint the relative contribution of each change, as undoing each
change and recalculating the MASE, or even calculating “drop-column importance” for
each variable would be very time consuming. Instead, we plot the importance (calculating
using permutations in ranger) of the top 20 variables. The plots for the model, for each
15 min offset in an hour, built for Buildings 0, 1, 3 and 6 and the solar model are shown in
Figures 6 and 7.

The distance from the Monash campus in a straight line is 3.2 km to Oakleigh, 8.3 km
to Moorabbin, and 16.1 km to Olympic Park; this ordering is reflected in the descending
order of variable importance in the building and solar models.

For the buildings, the weekday/weekend Boolean variable, followed by the “ssrd”
solar variables, the Fourier terms for the hour and Julian date, and the temperature variables
are the most important.

For the solar installations, the “ssrd” variables (lagging and leading) followed by the
daily BOM solar variables, following by Fourier terms for hour, day and then temperature
variables were most important. However, cloud cover, pressure and surface thermal
radiation variables (lagging and leading) were still included in the solar model as they
improved the performance for Phase 1.

A curious feature of the relative variable importance in the models is seen in the
“ssrd” variables; for three of the Building models (:15, :30, and :45), “ssrd” itself is the most
important solar variable. But in the four solar models, the important “ssrd” variables are
all leading variables and the most important temperature “t2m” variables are also leading
variables, often two or three hours into the future.
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Figure 6. Permutation importance of top 20 variables, Building model.
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Figure 7. Permutation importance of top 20 variables, Solar model.

6. Discussion

After the competition finished, we investigated whether the forecast could have
been improved by using extra data that was not mentioned or provided explicitly by
the organizers. This could increase the usefulness and generalisability of our model for
other applications.

For example, competitors were instructed to download a file of Victorian half-hourly
electricity grid pool prices from the Australian Energy Market Operator (AEMO) website
for the months of October and November 2020, for use with the optimisation section of the
competition. The file also contained electricity demand for the region of Victoria. Changing
the URL allowed competitors to access price and demand for all other months.

Elsewhere on the AEMO website, files containing five-minute price and demand (that
is, “dispatch period” rather than 30 min “trading period”) data were available. As of
1 July 2021 (after the competition forecast period), the Australian electricity grid has been
operated on a “five-minute settlement” basis [73]. This means that generators are paid
for their output based on a pool price which changes every five minutes, including in the
Victoria region.

Microgrids can be run as direct market participants; that is, it could be envisaged that
building air conditioning, for example, could be ramped up or down depending on the
real-time pool price. It is not known if the competition microgrid was being operated in this
way. The microgrid could be operated based on half-hourly pool prices, although market
participants can also see the five-minute pool prices.

The Australian Bureau of Meteorology provides one-minute solar data from the nearby
Tullamarine Airport [74] while the City of Melbourne provides 15 min microclimate sensor
readings [75].

Other numerical weather prediction (NWP) data are available. As noted above, other
published solar models use different variables from the ERA5 data set. The variables at the
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exact site location were obtained by OikoLab through the process of bilinearly interpolating
the nearest four ERA5 data points. Using only the magnitude of the wind rather than its
direction removes nuance from the wind data. Inverse distance weighting the four points is
another possible technique that could be used to interpolate between the ERA5 data points.
The usual exponent used is 2 as in the original paper [76] but this can be varied; see for
example [77].

From the ECMWF, higher-resolution data known as ERA5-Land [78] is available,
which covers the same variables at a 0.1× 0.1 degree grid resolution, except for cloud cover.
For the competition site, however, only three points on land were available.

The Japanese Meteorological Agency provides JRA-55 historical reanalysis data at
a 3-hourly, 0.5625 degree resolution [79] and the NCEP in the US provides GFS (Global
Forecasting System reanalysis data) at a 3-hourly, 0.25 degree resolution [80]. The JRA-55
reanalysis point was located only 400 m away from the microgrid.

Finally, the US National Aeronautics and Space Administration (NASA) provides
data from MERRA-2 [81] at an hourly, 0.5 latitude × 0.625 longitude degree resolution,
examined in [61]; the model “SWGNT” variable can be used for the solar radiation down-
wards variable.

The website “pvoutput.org” [82] allows users who donate to download historical data
from photovoltaic installations. Such data can be available at 5 min resolution. These data
are used in the Australian Solar Energy Forecasting System (ASEFS) of AEMO [83] and are
available at several sites near the microgrid. Similar data are available on a commercial
basis from a different company [84].

The “Weatherman” paper [85] described a method for determining the parameters
of a solar installation by examining time series data of its output, and then estimating its
size, location, angle of inclination, and orientation. A similar approach was implemented
to locate a house using PV data in [86] based on ECMWF data and PV simulation. This
approach may also have been useful in this and similar competitions, but could not pursued
due to lack of time.

Including AEMO 5-minute Victorian demand reduced the Phase 1 MASE slightly
(final average MASE 0.6395) while including AEMO 5-minute price data or MERRA-2 solar
data reduced the MASE by similar amounts.

In any case, including AEMO price or demand data (forecasts) in a production model
may not be realistic, unless the microgrid trades in the wholesale electricity market. Ad-
ditionally, MERRA-2 and JRA-55 are purely “reanalysis” data and thus no corresponding
forecast is currently available, as for BOM and ECMWF data.

Ultimately, it was determined that only the one-minute BOM solar data and PVOut-
put.org data provided significant improvements in the competition framework.

Table 5 shows the MASE for six competitors’ entries. The building and solar MASE
values are labelled “b” and “s”, respectively. The mean MASE over all 12 time-series values
for Phase 2 is shown in the top row. This was the benchmark used for the forecasting prize
of the competition.

Our error rates are in the column labelled “1” while those for five other entrants
are labelled “2” to “6” for comparison (2, 3 and 4 were ranked second, third and fourth).
The last two columns labelled “BOM” and “PVO” show the MASE when one-minute BOM
solar data from Tullamarine Airport is included and when the 15-min solar output (from
PVOutput.org) of seven houses nearby is added to the model (without adjusting any other
model parameters). In the last case, at almost all houses, the 15-min solar data for 2019 and
2020 is missing at least one data point. This limited the number of houses in the vicinity
to seven.

For the last “PVO” case, the solar MASEs are all in the range 0.22 to 0.35 (down from
0.38 to 0.60 in the submitted solution). It is noteworthy that the Building 1 MASE also
decreases with the addition of these variables.
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Adding one-minute solar data from the Tullamarine Airport, which is 37.7 km from
the site in great circle distance, has a much smaller effect, with the solar MASEs in the range
0.34 to 0.54.

As including these extra variables lowers the MASE significantly, a practical finding is
that competition winners should open-source their code for review not just by competition
organizers but the public. This should be communicated from the competition outset.
An example from Kaggle showed how hidden code was detected long after prizes were
awarded [87]. The possibility of competitors using these extra variables in an intermediate
step before the final solution cannot be excluded.

Table 5. Comparison of MASE for entries and with improvements.

1 2 3 4 5 6 BOM PVO

Mean 0.6460 0.7441 0.7750 0.8073 0.8474 1.0026 0.6217 0.5434

b0 1.0438 0.9081 0.9413 1.2008 1.3227 1.2376 1.0407 1.0383
b1 0.8840 0.9610 1.0171 1.1341 1.0362 1.1077 0.8881 0.8594
b3 0.6494 0.7524 0.6099 0.6398 0.7785 0.7711 0.6501 0.6610
b4 0.7236 0.6775 0.7236 0.8096 0.8269 0.7236 0.7236 0.7236
b5 0.7922 0.9654 0.8563 0.9493 0.8463 0.9157 0.7922 0.7922
b6 0.7476 0.7822 0.8611 1.0182 0.8577 0.7694 0.7460 0.7494
s0 0.6019 0.9305 0.9159 1.0439 1.0170 1.4421 0.5425 0.3513
s1 0.3860 0.4187 0.5222 0.3988 0.5416 0.8155 0.3468 0.2399
s2 0.4148 0.5314 0.6186 0.5248 0.6656 0.9462 0.3727 0.2234
s3 0.5475 0.7032 0.6678 0.7221 0.7118 1.0440 0.5048 0.3470
s4 0.4179 0.5616 0.6516 0.5173 0.7002 0.9947 0.3727 0.2620
s5 0.5435 0.7366 0.9145 0.7289 0.8639 1.2640 0.4799 0.2734

7. Conclusions

To forecast 15-min energy and solar time-series data, we applied the quantile regression
forest of [66] based on the original random forest idea of [65] as provided in the R ranger
package [70]. This was highly effective in conjunction with techniques of thresholding,
grouping related buildings and solar installations, combining daily and hourly data from
two uncorrelated data sources, and normalization. The quantile regression forest approach
was ideal as it required minimal parameter tuning and thus the process of building and
testing models was expedited in the time-pressured environment of the competition. Other
more complex approaches such as gradient boosting machines may have required more
parameter tuning.

In the training phase, the training data for each building and solar installation was
extended backwards from the latest available data, month by month, until the error rate
for each building or solar time series began to increase. In a production environment as
opposed to a competition, this approach should be verified by performing cross-validation.
This approach of grouping and thresholding may have captured different building types
present on campus and their differing response to reopening, as seen in studies of the effect
of COVID-19 lockdowns on energy at university campuses worldwide.

The success of combining daily solar exposure data from the Australian BOM with
hourly weather data from the ECMWF appeared to play a large part in the outperformance
of our approach versus the other contest entrants.

For real-world forecasting, it is beneficial to take the performance of private PV systems
into account; sites such as PVOutput.org can help in this case.

Further research could include studying the relative effect of each change, the potential
effect of interpolating weather variables differently, and testing other machine-learning
algorithms. In particular, it would be useful to generalize the approach of grouping
related buildings and solar installations. For the generalization from this microgrid to,
for example, houses in a larger electricity grid, the time-series grouping [88] could be based
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on different kinds of houses, residents, and aspects of solar installations, and could be
derived automatically rather than manually as in this competition.
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