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ivariate mixture modeling of transferrin saturation and
erum ferritin concentration in Asians, African Americans,
ispanics, and whites in the Hemochromatosis and Iron
verload Screening (HEIRS) Study

HRISTINE E. MCLAREN, VICTOR R. GORDEUK, WEN-PIN CHEN,
AMES C. BARTON, RONALD T. ACTON, MARK SPEECHLEY, OSWALDO CASTRO,
AUL C. ADAMS, BEVERLY M. SNIVELY, EMILY L. HARRIS, DAVID M. REBOUSSIN,
EOFFREY J. MCLACHLAN, and RICHARD BEAN, for the Hemochromatosis and Iron
verload Screening Study Research Investigators

RVINE, CALIF; WASHINGTON, DC; ORANGE, CALIF; BIRMINGHAM, ALA; LONDON, ONTARIO, CANADA; WINSTON-SALEM,
C; PORTLAND, ORE; AND BRISBANE, AUSTRALIA

Bivariate mixture modeling was used to analyze joint population distributions of transferrin
saturation (TS) and serum ferritin concentration (SF) measured in the Hemochromatosis and
Iron Overload Screening (HEIRS) Study. Four components (C1, C2, C3, and C4) with suc-
cessively age-adjusted increasing means for TS and SF were identified in data from 26,832
African Americans, 12,620 Asians, 12,264 Hispanics, and 43,254 whites. The largest com-
ponent, C2, had normal mean TS (21% to 26% for women, 29% to 30% for men) and SF
(43–82 �g/L for women, 165–242 �g/L for men), which consisted of component proportions
greater than 0.59 for women and greater than 0.68 for men. C3 and C4 had progressively
greater mean values for TS and SF with progressively lesser component proportions. C1 had
mean TS values less than 16% for women (<20% for men) and SF values less than 28 �g/L
for women (<47 �g/L for men). Compared with C2, adjusted odds of iron deficiency were
significantly greater in C1 (14.9–47.5 for women, 60.6–3530 for men), adjusted odds of liver
disease were significantly greater in C3 and C4 for African-American women and all men,
and adjusted odds of any HFE mutation were increased in C3 (1.4–1.8 for women, 1.2–1.9
for men) and in C4 for Hispanic and white women (1.5 and 5.2, respectively) and men (2.8
and 4.7, respectively). Joint mixture modeling identifies a component with lesser SF and TS
at risk for iron deficiency and 2 components with greater SF and TS at risk for liver disease
or HFE mutations. This approach can identify populations in which hereditary or acquired
factors influence metabolism measurement. (Translational Research 2007;xx:xxx)

Abbreviations: EM � expectation-maximization; HFE � hemochromatosis gene on chromo-
some 6p; HEIRS � Hemochromatosis and Iron Overload Screening; SF � serum ferritin concen-
tration; TS � transferrin saturation; wt � wild type
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S and SF are iron measures, the levels of which are
nfluenced by iron stores, a variety of inflammatory and
eoplastic disorders, and inheritance of alleles in iron-
elated genes. C282Y is a common missense mutation
f the HFE gene,1 which is detected typically in whites
f northern European ancestry; however, the HFE
63D allele occurs in most race/ethnic groups world-
ide.2 In Caucasian participants enrolled in a screening

tudy conducted at the Kaiser Permanente San Diego
ealth Appraisal Clinic, components of TS identified
y mixture modeling corresponded to distributions of
FE genotypes.3 The HEIRS Study is a large, multi-

enter screening study in which TS, SF, and HFE
utations were measured for each participant.4,5 Anal-

ses of phenotypic and genotypic data collected from
4,136 non-Hispanic Caucasian participants in the
EIRS Study enrolled in different geographic regions
emonstrated a strong association between the HFE
enotype and the TS subpopulations. The analyses also
onfirmed the validity of the mixture modeling ap-
roach when applied to a convenience sample of pa-
ients observed at primary care clinics and at blood
rawing facilities.6

In contrast with previous investigations that modeled
he univariate distribution of TS, we now report de-
ailed analyses of the bivariate distribution of TS and
F values from African Americans, Asians, Hispanics,
nd non-Hispanic whites enrolled in the HEIRS Study.
he following hypotheses were evaluated in these anal-

AT A GLANCE COMMENTARY

Background

This study evaluated the association among levels
of iron measures, transferrin saturation (TS) and
serum ferritin concentration (SF), and the presence
of HFE mutations, self-reported liver disease, and
iron deficiency in multiethnic populations. Mix-
ture modeling identified components with de-
creased SF and TS at risk for iron deficiency, a
component with normal mean SF and TS, and 2
components with increased SF and TS at risk for
liver disease or HFE mutations.

Translational Significance

This approach identifies populations in which he-
reditary or acquired factors influence metabolism
measurement, potentially complementing and en-
hancing genetic testing for assessment of disease
complications.
ses: 1) The residual distribution of TS and natural w
ED
 P

RO
O

F

ogarithm of SF can be modeled as a mixture of normal
istributions for each gender after removal of the ef-
ects of age and study site; 2) it is possible to identify
omponents with progressively increasing means of TS
nd SF, standardized to the median age that reflects
ajor locus and environmental effects; and 3) for some

ace/ethnicities, an association exists between TS and
F components and presence of HFE mutations, self-
eported liver disease, and iron deficiency. The statis-
ical issues that have been addressed include the need
or appropriate adjustment for known sources of vari-
tion in biologic markers; fitting a bivariate normal
odel to the data; estimation of the mixing proportion,
ean values for TS and SF, and 95% confidence el-

ipses within each subpopulation; and evaluation of the
ssociation between levels of TS and SF and the pres-
nce of HFE mutations, self-reported liver disease, and
ron deficiency.

ETHODS

Sources of data. The source of data was the HEIRS
tudy, the goals of which were to evaluate the prevalence;
enetic and environmental determinants; and potential
linical, personal, and societal impact of hemochroma-
osis and iron overload in a multiethnic, primary care–
ased sample of 101,168 adults over a 7-year period.
articipants, who were at least 25 years old, were
ecruited from 5 field centers, 4 in the United States and
in Canada. The research was conducted according to

he principles of the Declaration of Helsinki. Informed
onsent was obtained, and the study protocol was ap-
roved by the Institutional Review Board of each field
enter.
Laboratory screening tests included spectrophoto-
etric serum iron and unsaturated iron binding capac-

ty, turbidometric immunoassay of SF (Roche Applied
cience/Hitachi 911, Indianapolis, Ind) and calculated
S on nonfasting blood samples. The central labora-

ory, located at the University of Minnesota Medical
enter (Fairview, Minneapolis, Minn), performed all

aboratory screening tests, with the exception of TS
esting of the Canadian participants. These tests were
erformed at MDS Laboratory Services (Buraby, Brit-
sh Columbia, Canada) using an identical method. HFE
282Y and H63D alleles were determined from spots
f whole blood with the use of a modification of the
nvader assay (Third Wave Technologies, Madison, Wis)
hat increases the allele-specific fluorescent signal by
ncluding 12 cycles of locus-specific polymerase chain
eaction before the cleavase reaction. Absence of a
etectable C282Y or H63D mutation was designated as
t. Race/ethnicity was self-reported on an initial

creening form; participants indicated whether they

ere of Hispanic or Latino heritage, and they could 108
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ark as many race/ethnicity categories as necessary to
escribe their background. We examined data from
articipants who identified themselves as white or Cau-
asian only; black or African-American only at US field
enters or black, African, Haitian, Jamaican, or Somal
n Ontario only; Spanish, Latino, or Hispanic heritage,
rrespective of additional racial/ethnic identification; or
sian only. SF varies with age and sex,7,8 and TS is

ffected by diurnal and day-to-day variability.9,10 In the
EIRS Study, thresholds for increases in TS and SF
ere TS greater than 50% and SF greater than 300
g/L for men and TS greater than 45% and SF greater

han 200 �g/L for women. Other details of study de-
ign, laboratory testing, data management, and analysis
re described elsewhere.5

Selection criteria. We analyzed data from African-
merican (n � 26,832), Asian (n � 12,620), Hispanic

n � 12,264), and non-Hispanic white (n � 43,254)
en and women for whom complete data on TS, SF,
FE genotypes, and age were available and for whom

he age in years was specified. The 6 HFE genotypes
ere designated by the mutations present, or wt if
either mutation was found, as follows: wt/wt, H63D/
t, C282Y/wt, C282Y/H63D, H63D/H63D, and C282Y/
282Y. Data from participants who reported that they
ad been told previously by a doctor that they had
emochromatosis, iron overload, or increased iron in
he body were excluded because of the possible de-
reasing of TS or SF as a consequence of treatment.
ata from participants who reported hearing about

he study exclusively from a family member were ex-
luded to control for possible selection bias. The de-
ection thresholds of the laboratory instruments were
% for TS and 15 �g/L for SF. Values below these
etection thresholds were imputed as 1.5% for TS and
.5 �g/L for SF. The final samples for TS modeling
onsisted of observations of 94,970 participants (59,692
omen and 35,278 men).
Adjusted TS and SF concentration. To remove known

ources of variation, TS and SF values were adjusted
or age and field center using separate multiple linear
egression analyses for each gender and racial/ethnic
roup. Without appropriate adjustment, parameter esti-
ates (eg, mean and variance for mixture components)
ight be biased. Because a nonlinear relationship ex-

sted between TS and age, the method of restricted
ubic splines was used to estimate terms that represent
ge as predictors for TS.11 Multiple linear regression
or the outcome variable TS was then applied with
redictors, including spline terms for age and dummy
ariables created for field center, which are expressed
elative to the field center where mean TS was least.
or each individual, the value of the regression residual

as calculated and the adjusted TS was computed as w
ED
 P

RO
O

F

he sum of the regression residual and a constant. The
onstant was calculated as the predicted TS at the
edian age with equal weights applied to parameters

or field center. Median ages were 47 years for African-
merican women, 50 years for Asian women, 42 years

or Hispanic women, 52 years for non-Hispanic Cau-
asian women, 48 years for African-American men, 52
ears for Asian men, 43 years for Hispanic men, and 55
ears for non-Hispanic Caucasian men.
The distributions of SF values were skewed. Box–Cox

ransformations were applied, and the transformation
hat indicated normality most closely was selected. The
ransformation was applied for data from Asians, African-
merican men, and whites. The natural log transfor-
ation was applied to data from African-American
omen and Hispanics. Because SF tends to increase
ith age7,8 and to vary by field center, gender-specific

nd racial/ethnic-specific multiple linear regression
quations were formed by regressing the SF values on
pline terms for age and field center. For each individ-
al, the adjusted SF value was calculated as the sum of
he regression residual and a constant. The constant was
alculated as the predicted SF at the median age with
qual weights applied to parameters for field center.

Statistical mixture modeling of the bivariate distribution
f TS and SF. For analysis of the bivariate distribution of
S and SF, adjusted for age, and field center, the physi-
logic models we considered were a single, bivariate
ormal distribution and mixtures of bivariate normal
istributions.12,13 This analysis is represented by a set
f statistical models for a random sample Y1, Y2, . . ., Yn

f TS and SF values from n subjects. Let g denote the
umber of mixture components in the model (g �
,2,3 . . .). Under the model with g components, each
omponent i has proportion �i, and each Yj has density
uch that

fg(yj;�, �, �) � �
i�1

g

�i�(yj;�i, �i)

here

0 � �i � 1 �i � 1, 2, . . . , g�
nd

�
i�1

g

�i � 1.

The function ��yj;�i,�i� denotes the multivariate normal
ensity with mean �i and component-covariance matrix

i. As noted by McLachlan,13 a normal mixture model
ithout restrictions on the component–covariance ma-

rices may be viewed as too general for many situations
n practice. We compared the results of fitting mixtures

ith and without the assumption of homoscedasticity 162
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nd found that whereas the general model has flexibil-
ty, in most cases, the assumption of homoscedasticity
here �i � � (i � 1, 2, . . ., g), produced a better fit in

he lower and upper tails of distributions (ie, lesser and
reater values of TS and SF). For results reported in this
rticle, the component–covariance matrices were re-
tricted to being the same; thus, �i � � (i � 1, 2, . . ., g).

For each data set, we applied the EMMIX13 program
o fit models and to assess the number of normal com-
onents. This program evaluates mixtures of distribu-
ions via the EM algorithm. The advantages of this
rogram are that several methods are available to pro-
ide starting values for parameters, restrictions may be
laced on the component–covariance matrices, the
ange of local solutions can be viewed graphically, and

bootstrap assessment of the fit to components is
rovided. The EM algorithm is an approach to the
terative computation of maximum likelihood estimates
or incomplete-data problems. For the current applica-
ion, the observed data are viewed as being incomplete,
s the associated mixture components are unknown.
wo steps exist for each iteration of the EM algorithm.
tarting from initial parameter estimates, the condi-

ional expectation of the log-likelihood given the ob-
erved data is computed in the expectation step. New
alues for the mixture model parameter estimates are
omputed in the maximization step by global maximi-

able I. Summary of bivariate 4-component mixture
ge and field center*

Racial/ethnic
group for women Mixture component

frican-American C4
� 17,085 C3

C2
C1

sian C4
� 7,546 C3

C2
C1

ispanic C4
� 8,469 C3

C2
C1

hite C4
� 26,592 C3

C2
C1

bbreviation: CI, confidence interval.
Weighted prevalence of HFE mutations and self-reported liver di
Race/ethnic distribution for 57,251 of 59,692 women (95.5%) who
iver disease: African American (n � 15,867, 92.8%), Asian (n � 74
Presence of iron deficiency is defined as SF �15 �g/L.
ation of conditional expectation of the complete data s
ED
 P

RO
O

F
og-likelihood. Iterations continue until convergence is
eached according to prespecified criteria. Excellent
escriptions and applications of this approach are given
lsewhere.12–15 For each data set, a random sample of
0% of the data was used for each of 6 random starts
nd equal diagonal covariance matrices were specified.
he significance of the likelihood ratio test statistics at

he 0.01 level was assessed.13 For additional assess-
ent of model fit, the AIC and BIC statistics and

stimates of overall correct allocation rate were exam-
ned. Based on the final racial/ethnic-specific models
or men and women, the proportions and the means and
ariances for adjusted TS and adjusted SF within com-
onents of the bivariate distribution were computed.
Prevalence of HFE mutations, self-reported liver disease,

nd iron deficiency, within TS and SF components. The
revalence within TS and SF components, adjusted for
ge and field center, was computed for any HFE mutation
H63D/wt, C282Y/wt, C282Y/H63D, H63D/H63D, or
282Y/C282Y), the C282Y HFE mutation (C282Y/wt,
282Y/H63D, or C282Y/C282Y), self-reported liver
isease, and iron deficiency, which was defined as SF
ess than 15 �g/L. Differences in self-reported liver
isease, iron deficiency, and presence of HFE muta-
ions with respect to TS and SF components were
ssessed. Odds ratio estimates are reported with corre-

ls for TS and SF in 59,692 women, adjusted for

oportion Mean TS (%) Mean SF (�g/L)

06 79.3 266
97 41.5 113
31 23.3 76
66 12.9 17
08 70.2 221
74 41.8 120
07 25.6 82
11 12.4 22
15 57.4 83
19 35.1 64
94 21.7 43
72 11.7 10
07 80.0 203
20 44.8 103
20 26.1 80
54 15.1 27

hin components.
-reported answers to a question at screening regarding history of
), Hispanic (n � 7890, 93.2%), and white (n � 26085, 98.1%).
mode

Mixing pr

0.0
0.0
0.7
0.1
0.0
0.1
0.7
0.1
0.0
0.2
0.5
0.1
0.0
0.1
0.7
0.1

sease wit
gave self
ponding 95% bootstrap confidence intervals. 216
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ESULTS

Statistical mixture modeling of TS and SF. The final
nalytic sample consisted of TS and SF values from
6,832 African Americans (17,085 women, 9,747 men),
2,620 Asians (7,546 women, 5,074 men), 12,264 His-
anics (8,469 women, 3,795 men), and 43,254 non-
ispanic Caucasians (26,592 women, 16,662 men).
ables I and II display the results of statistical mixture
odeling, which reflect 4 components with succes-

ively increasing means for TS and SF. Scatterplots of
djusted TS and SF are displayed in Figs 1–4. The 95%
onfidence ellipses are superimposed on each and re-
ect the component probability densities with clear
eparation between 95% confidence ellipses for the
owest and highest components. The estimated propor-
ions for the 4-component models differ by race/ethnic
roup and gender. Mean TS and SF in corresponding
ixture components are greater for men than women.
C4. For each race/ethnicity and gender, C4 contained

he smallest estimated proportion of values. For men,
he estimated means for TS and SF in C4 exceeded
EIRS Study thresholds for increased TS and SF: TS
reater than 83.8% and 886 �g/L in African Ameri-
ans, 83.5% and 686 �g/L in whites, 79.4% and 660
g/L in Asians, and 80.4% and 503 �g/L in Hispanics

Table II). As shown in Table I, for women, the esti-

able I. Continued

HFE mutations Self-report

Weighted
prevalence (%)

Adjusted odds
ratio (95% CI)

Weighted
prevalence (%)

11.6 1.56 (0.87, 2.77) 14.6
12.7 1.74 (1.51, 1.94) 2.6
7.7 1 1.4
6.7 0.86 (0.77, 0.98) 0.9
6.8 0.81 (0.43, 1.27) 8.4

11.0 1.35 (1.19, 1.50) 6.0
8.3 1 5.1
7.8 0.93 (0.80, 1.07) 3.7

27.3 1.47 (1.06, 2.03) 7.6
26.6 1.42 (1.31, 1.53) 2.6
20.4 1 2.8
19.4 0.94 (0.85, 1.05) 2.0
75.8 5.18 (3.74, 7.18) 6.8
52.1 1.79 (1.70, 1.87) 2.6
37.8 1 2.3
34.6 0.87 (0.84, 0.91) 1.8
ated means for TS and SF are 79.3% and 266 �g/L in H
ED
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F
frican Americans, 70.2% and 221 �g/L in Asians,
0.0% and 203 �g/L in whites, and 57.4% and 83 �g/L
n Hispanics. In most cases, these mean estimates ex-
eed HEIRS Study thresholds for increased TS and SF.

C1. For all groups, C1 contained the second-to-the-
mallest estimated proportion of values. For men, the
stimated means for TS and SF in C1 are 15.3% and 38
g/L in African Americans, 6.4% and 24 �g/L in His-
anics, 17.6% and 43 �g/L in whites, and 19.1% and 46
g/L in Asians. For women, the estimated means are
1.7% and 10 �g/L in Hispanics, 12.9% and 17 �g/L in
frican Americans, 12.4% and 22 �g/L in Asians, and
5.1% and 27 �g/L in whites.
C2 and C3. For all groups, C2 contained the largest

roportion of values; C3 contained the second-to-the-
argest estimated proportion. For men, the estimated
eans for TS in these components are between 21%

nd 41% with estimated means for SF between 165
g/L and 347 �g/L. For women, the estimated means

or TS in these components are between 21% and 45%
ith estimated means for SF between 43 �g/L and 120
g/L.
Prevalence of HFE mutations and self-reported liver dis-

ase within TS and SF subpopulations. Tables I and II
isplay weighted prevalence of HFE mutations within
ach mixture component and the adjusted odds of any

isease† Iron deficiency‡

djusted odds
atio (95% CI)

Weighted
prevalence (%)

Adjusted odds
ratio (95% CI)

.7 (6.33, 20.7) 5.0 2.69 (0.90, 5.94)
81 (1.35, 2.42) 2.0 1.05 (0.79, 1.36)

1 1.9 1
61 (0.45, 0.80) 44.2 40.0 (37.4, 42.7)
71 (0.74, 3.77) 2.0 0.72 (0.01, 3.80)
19 (1.02, 1.37) 0.9 0.31 (0.23, 0.45)

1 2.8 1
71 (0.60, 0.86) 29.8 14.9 (13.5, 16.11)
.84(1.37, 5.37) 2.0 0.64 (0.11, 1.45)
91 (0.73, 1.56) 1.6 0.53 (0.43, 0.68)

1 3.0 1
71 (0.53, 1.01) 59.6 47.5 (44.3, 50.6)
13 (1.64, 5.37) 1.4 0.57 (0.71, 1.81)
13 (0.96, 1.34) 1.4 0.57 (0.45, 0.71)

1 2.4 1
79 (0.69, 0.91) 29.3 17.0 (16.4, 17.6)
ed liver d

A
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eficiency, relative to that of C2. On the basis of TS and
F, in C4, the odds of any HFE mutation were in-
reased significantly in white women (5.18; 95% con-
dence interval 3.74–7.18) and in Hispanic women
1.47; 1.06–2.03). Odds of any HFE mutation were
ncreased significantly in white men (4.74; 3.35–6.63),
ispanic men (2.82; 1.48–5.07), and African-American
en (2.38; 1.34–4.03).
Similarly, for those with adjusted TS and SF in C4,

dds of self-reported liver disease were greatest for
frican-American women (11.7; 6.33–20.7) and men

10.4; 5.76, 18.9) and were significantly increased for
hite women (3.13; 1.64–5.37), Hispanic women (2.84;
.37–5.37), Asian men (7.26; 4.22–12.2), Hispanic men
10.l7; 4.71–22.6), and white men (4.93; 3.11–8.62),
ompared with C2.
The adjusted odds of iron deficiency were greater for
hites (women 17.0, 16.4–17.6; men 60.6, 53.4–68.3),
ispanics (women 47.5, 44.3–50.6; men 3530, 1888–
914), and African Americans (women 40.0, 37.4–
2.7; men 332, 234–440) for those with age-adjusted
S and SF attributed to the lowest mixture C1, relative

o C2, as shown in Tables I and II.

ISCUSSION

For data from 94,970 Asians, African Americans,
ispanics, and whites enrolled in the HEIRS Study,

able II. Summary of bivariate 4-component mixtur
nd field center*

Racial/ethnic
group for men Mixture component

frican-American C4
�9,747 C3

C2
C1

sian C4
�5,074 C3

C2
C1

ispanic C4
�3,795 C3

C2
C1

hite C4
�16,662 C3

C2
C1

bbreviation: CI, confidence interval.
Weighted prevalence of HFE mutations and self-reported liver di
Race/ethnic distribution for 33,926 of 35,278 men (96.2%) who gav
isease: African American (n � 9077, 93.1%), Asian (n � 4972, 98.
Presence of iron deficiency is defined as SF �15 �g/L.
fter removal of sources of variability, including age i
ED
 P

RO
O

F
nd field center, bivariate mixtures of 4 normal com-
onents were identified with successively increasing
eans for TS and SF (Tables I and II, Figs 1–4). On a

opulation basis, race/ethnic-specific components were
dentified with increased mean TS and SF, increased
dds of HFE mutations, and increased odds of self-
eported liver disease that possibly reflect iron overload
nd/or substantial hepatic dysfunction, or the effect of
enes that may be modifiers of iron overload. The
ixture modeling analyses also identified a component,
1, with low mean TS and SF and greater prevalence of

ron deficiency. For African Americans, Hispanics, and
hites, this component also was associated with the

east prevalence of C282Y HFE mutations compared
ith the largest mixture component, C2, with predom-

nantly normal values for TS and SF, which possibly
eflects the protective effect of the C282Y HFE muta-
ion against iron deficiency.

Our previous univariate mixture modeling studies
ith various population data sets have indicated that
S follows 3 components in Caucasians and African
mericans. These components are consistent with a
ajor locus or loci that influence iron metabolism in

hat the largest component has the lowest mean TS and
hat 2 progressively smaller components have progres-
ively greater mean TS values.3,6,16–18 Furthermore,
hese components of increasing mean TS have increas-

ls for TS and SF in 35,278 men, adjusted for age

oportion Mean TS (%) Mean SF (�g/L)

09 83.8 886
05 48.0 310
56 28.6 208
29 15.3 38
13 79.4 660
45 45.2 347
90 29.3 242
52 19.1 46
10 80.4 503
30 48.8 281
39 29.9 188
22 16.4 24
09 83.5 686
38 48.0 234
02 28.9 165
50 17.6 43

hin components.
orted answers to a question at screening regarding history of liver

anic (n � 3603, 94.9%), and white (n � 16274, 97.7%).
e mode

Mixing pr

0.0
0.1
0.8
0.0
0.0
0.2
0.6
0.0
0.0
0.1
0.8
0.0
0.0
0.1
0.8
0.0

sease wit
e self-rep
ng iron stores as reflected by SF.3,6,16 In Caucasians, 324
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he greatest TS component is enriched for HFE C282Y
nd H63D homozyotes or compound heterozygotes and
he middle TS component is enriched for HFE C282Y
eterozygotes.3,6 We hypothesized that bivariate mod-
ling of SF and TS would be superior to univariate
odeling of TS because it might enable the identifica-

ion of additional components and the ability to test for
n association with disorders of iron metabolism. For
his component, the odds of iron deficiency in women
aried from 14.9 times greater in Asians to 40 times
reater in African Americans when compared with the
omponent with normal mean TS and SF. Iron defi-
iency is common among women in the population19,20

nd would be expected to affect substantially the dis-
ribution of measures of iron status in women. In the
urrent study, the refinement of adding SF-enabled
dentification of a 4th component with lower SF and TS
t risk for iron deficiency. Thus, the current bivariate
nalysis of SF and TS, which identifies a component
ith lower iron measures than the largest component,
2, seems to reflect more elegantly and accurately the
istribution of measures of iron status in the population
s compared with univariate TS modeling.
Compared with C2 of the current study, C3 and C4

re enriched for HFE C282Y and H63D mutations.
his enrichment is consistent with our previous studies
ith univariate TS modeling.3,6 A new feature of the

able II. Continued

HFE mutations Self-reporte

Weighted
prevalence (%)

Adjusted odds
ratio (95% CI)

Weighted
prevalence (%)

16.2 2.38 (1.34, 4.03) 17.4
12.7 1.80 (1.57, 2.12) 3.6
7.5 1 2.0
6.2 0.81 (0.57, 1.17) 2.9
8.9 1.10 (0.45, 2.14) 31.5
9.8 1.22 (1.06, 1.30) 8.9
8.2 1 6.0

10 1.25 (0.95, 1.65) 3.9
43.8 2.82 (1.48, 5.07) 28.4
32.5 1.75 (1.52, 2.03) 5.8
21.6 1 3.6
28.5 1.45 (0.97, 2.25) 4.3
73.4 4.74 (3.35, 6.63) 12.5
52.6 1.90 (1.79, 2.01) 4.4
36.8 1 2.8
34.1 0.89 (0.81, 0.96) 2.6
urrent analysis is that we determined how self-reported T
ED
 P

RO
O

F
iver disease corresponds to the components identified
y mixture modeling. Hepatocellular damage leads to
ncreases in SF and TS independently of iron stores21,22

nd would be predicted to be represented in the com-
onents with increases in these variables. Compared
ith C2 of the current study, both C3 and C4 have

ncreased odds of self-reported liver disease in most
thnic groups by sex, especially C4.
An interesting feature of the current study is that
FE mutations contributed most predominantly to C4,

he component with the greatest TS and SF values, in
aucasians (weighted prevalence of 76% women and
3% men) and progressively less so in Hispanics (27%
omen and 44% men), African Americans (12% women

nd 16% men), and Asians (7% women and 9% men).
evertheless, compared with Caucasians, C4 made up

imilar or greater parts of the overall distribution for
ispanics, African Americans, and Asians, and it had

imilar or greater mean TS and SF values. One possible
xplanation for these observations is that common,
ajor loci that influence iron metabolism are yet to be

iscovered in these population groups. Another possi-
ility is that liver disease is dramatically more common
n these populations, but the historical information of
he current study does not reflect this possibility.

McGrath et al23 developed a predictive nomogram
or the prediction of HFE C282Y homozygotes from

isease† Iron deficiency‡

justed odds
tio (95% CI)

Weighted
prevalence (%)

Adjusted odds
ratio (95% CI)

4 (5.76, 18.9) 0.00 0.00 (0.00, 0.00)
2 (1.40, 2.51) 0.00 0.00 (0.00, 0.00)

1 0.09 1
6 (0.71, 2.51) 23.5 332 (234.3, 440.2)
6 (4.22, 12.2) 0.00 0.01 (0.00, 0.03)
4 (1.32, 1.82) 0.04 1.37 (0.03, 4.54)

1 0.03 1
4 (0.46, 0.91) 9.91 412 (248.2, 553.7)
7 (4.71, 22.6) 0.00 0.00 (0.00, 0.00
5 (1.22, 2.35) 0.00 0.05 (0.01, 0.12)

1 0.01 1
9 (0.51, 2.91) 32.9 3530 (1888, 5914)
3 (3.11, 8.62) 0.01 0.02 (0.00, 0.12)
9 (1.37, 1.86) 0.09 0.33 (0.11, 1.13)

1 0.27 1
2 (0.74, 1.13) 14.1 60.6 (53.4, 68.3)
d liver d

Ad
ra

10.
1.8

1.4
7.2
1.5

0.6
10.
1.6

1.1
4.9
1.5

0.9
S and SF. For clinical use, the approach allowed 378
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rediction of the probability that a patient was a C282Y
omozygote over a wide range of SF and TS values.
his prediction is an example of the use of the 2

Fig 1. Scatterplot of age-adjusted TS and SF with
model: (A) Asian women and (B) Asian men.
iochemical tests, SF and TS, to improve the predictive a
ED
 P

RO
O

F

bility of the single SF test.23 In contrast, we have taken
population-based approach to examine the distribu-

ion of phenotypic data in 4 different race/ethnic groups

fidence ellipses based on the 4-component mixture
CT
nd the association with prevalence of HFE gene mu- 432
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Fig 2. Scatterplot of age-adjusted TS and SF with 95% confidence ellipses based on the 4-component mixture
model: (A) African-American women and (B) African-American men. Values from HFE C282Y homozygotes

are shown as blue dots. 484

485
486
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ations and disease manifestations. Another example of
ow this approach can be useful is given by Nam-
oodiri et al24 and Elston et al.25 They analyzed the

Fig 3. Scatterplot of age-adjusted TS and SF with 95%
(A) Hispanic women and (B) Hispanic men. Values
ge-adjusted bivariate distribution of cholesterol and 1
ED
 P

RO
O

F

riglycerides in data from 247 individuals in 33 families
here the probands had a type IIb lipoprotein pheno-

ype. Results showed that the joint distribution had only

ce ellipses based on the 4-component mixture model:
C282Y homozygotes are shown in blue dots.
CT
local maximum, which suggests the action of a single 540
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Fig 4. Scatterplot of age-adjusted TS and SF with 95% confidence ellipses based on the 4-component
mixture model: (A) white women and (B) white men. Values from HFE C282Y homozygotes are shown as

blue dots.
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enetic determinant in the sample. They discuss the power
f bivariate analyses of multigenerational data.24,25

Limitations of the current study are that TS and SF
ere based on single determinations of blood sam-
les collected at various times during the day. Con-
iderable day-to-day variation exists for TS,9 and this
easure is also affected by a substantial diurnal

ariation.10 Both SF and TS are influenced by in-
ammation, with SF being increased and TS being
ecreased,26,27 and we could not account for these
otential changes in the current study. Despite these
imitations, in the case of iron metabolism measures,
ivariate mixture modeling seems to reflect the ef-
ects of a major genetic locus (HFE) and the effects
f acquired factors (iron deficiency and self-reported
iver disease).

In conclusion, bivariate mixture modeling can im-
rove on univariate modeling in terms of reflecting the
agnitude and complexity of health problems in the

opulation as reflected in commonly available clinical
ests. Such methodology has the potential to comple-
ent and to enhance genetic testing for assessment of

isease complications.
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