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An important and common problem in microarray experiments is the detection of genes that are dif-
ferentially expressed in a given number of classes. As this problem concerns the selection of significant
genes from a large pool of candidate genes, it needs to be carried out within the framework of multiple
hypothesis testing. In this paper, we focus on the use of mixture models to handle the multiplicity issue.
With this approach, a measure of the local FDR (false discovery rate) is provided for each gene. An
attractive feature of the mixture model approach is that it provides a framework for the estimation of
the prior probability that a gene is not differentially expressed, and this probability can subsequently be
used in forming a decision rule. The rule can also be formed to take the false negative rate into account.
We apply this approach to a well-known publicly available data set on breast cancer, and discuss our
findings with reference to other approaches.

1. Introduction

DNA microarrays allow the simultaneous measure-
ment of the expression levels of tens of thousands of
genes for a single biological sample; see, for example,
McLachlan et al.1 Here the term expression level of a
gene refers to the concentration of its corresponding
bound mRNA as measured by the fluorescence inten-
sity in the microarray experiment. A major objective
in these experiments is to find genes that are dif-
ferentially expressed in a given number of classes.

In cancer studies, the classes may correspond to nor-
mal versus tumor tissues, or to different subtypes
of a particular cancer. Comparing gene expression
profiles across these classes gives insight into the
roles of these genes, and is important in making
new biological discoveries. Yet now a real goal for
microarrays is to establish their use as tools in
medicine. This requires the identification of subsets
of genes (marker genes) potentially useful in cancer
diagnosis and prognosis.
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In the early days of microarray technology, a sim-
ple fold change test with an arbitrary cut-off value
was used to determine differentially expressed genes.
This method is now known to be unreliable as it
does not take into account the statistical variabil-
ity. In order to determine statistical significance, a
test such as the t-test, can be performed for each
gene. However, when many hypotheses are tested the
probability of a type I error (false positive) occur-
ring increases sharply with the number of hypothe-
ses. This multiplicity poses a considerable problem
in microarray data, where there are many thousands
of gene expression values.

It is also clear that single genes do not act
independently, rather groups of genes involved in
a particular biological pathway may be under
similar control (co-regulated genes). In addition
there is often dependency in the measurement
errors in microarray experiments. Both these factors
contribute to correlation between the test statistics.

Recently, a number of sophisticated statistical
methods have been proposed, including several non-
parametric methods. Tusher et al.2 in their signifi-
cance analysis method (SAM), proposed a refinement
on the standard Student’s t-statistic. Because of the
large number of genes in microarray experiments,
there will always be some genes with a very small
sum of squares across replicates, so that their (abso-
lute) t-values will be very large whether or not their
averages are large. The modified t-statistic of Tusher
et al.2 avoids this problem. Pan et al.3 also con-
sidered a nonparametric approach in their mixture
model method (MMM). These methods are reviewed
in Pan.4

In this paper, we initially present the statistical
problem and show how a prediction rule based on
a two-component mixture model can be applied. In
particular, we show how the mixture model approach
can handle the multiplicity issue. It provides a mea-
sure of the local FDR (false discovery rate), but can
be used in the spirit of the q-value. In the latter
case, an upper bound, co, can be obtained on the
posterior probability of nondifferential expression, to
ensure that the FDR is bounded at some desired
level α.

We apply this method to real data, in the well-
known breast cancer study of Hedenfalk et al.5 with
the aim of identifying new genes which are dif-
ferentially expressed between BRCA1 and BRCA2

tumors. We compare our findings with those of
Storey and Tibshirani,6 and of Broët et al.7 who also
analysed this data set using different approaches.

To address the issue of co-regulated genes and
dependency between the test statistics we consider
the simulation experiment as in Allison et al.8

2. Two-Component Mixture Model
Frame-Work

2.1. Definition of model

We focus on a decision-theoretic approach to the
problem of finding genes that are differentially
expressed. We use a prediction rule approach based
on a two-component mixture model as formulated in
Lee et al.9 and Efron et al.10 We let G denote the
population of genes under consideration. It can be
decomposed into G0 and G1, where G0 is the popu-
lation of genes that are not differentially expressed,
and G1 is the complement of G0; that is, G1 contains
the genes that are differentially expressed.

We let the random variable Zij be defined to be
one or zero according as the jth gene belongs to Gi

or not (i = 0, 1; j = 1, . . . , N). We define Hj to be
zero or one according as to whether the null hypothe-
sis of no differential expression does or does not hold
for the jth gene. Thus Z1j is zero or one according
as to whether Hj is zero or one.

The prior probability that the jth gene belongs
to G0 is assumed to be π0 for all j. That is, π0 =
pr{Hj = 0} and π1 = pr{Hj = 1}. Assuming that
the test statistics Wj all have the same distribution
in Gi, we let fi(wj) denote the density of Wj in
Gi (i = 0, 1). The unconditional density f(wj) of Wj

is given by the two-component mixture model

f(wj) = π0 f0(wj) + π1 f1(wj). (1)

Using Bayes Theorem, the posterior probability
that the jth gene is not differentially expressed (that
is, belongs to G0) is given by

τ0(wj) = π0f0(wj)/f(wj) (j = 1, . . . , N). (2)

In this framework, the gene-specific posterior
probabilities τ0(wj) provide the basis for optimal sta-
tistical inference about differential expression.

2.2. Bayes decision rule

Let e01 and e10 denote the two errors when a rule
is used to assign a gene to either G0 or G1, where
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eij is the probability that a gene from Gi is assigned
to Gj (i, j = 0, 1). That is, e01 is the probability of
a false positive and e10 is the probability of a false
negative. Then the risk is given by

Risk = (1 − c)π0e01 + cπ1e10, (3)

where (1 − c) is the cost of a false positive. As the
risk depends only on the ratio of the costs of misallo-
cation, they have been scaled to add to one without
loss of generality.

The Bayes rule, which is the rule that minimizes
the risk (3), assigns a gene to G1 if

τ0(wj) ≤ c; (4)

otherwise, the jth gene is assigned to G0. In the case
of equal costs of misallocation (c = 0.5), the cut-
off point for the posterior probability τ0(wj) in (4)
reduces to 0.5.

2.3. The FDR and FNR

When many hypotheses are tested, the probabil-
ity that a type I error (false positive) is made
increases rapidly with the number of hypotheses.
The Bonferroni method is perhaps the best known
method for dealing with this problem. It controls the
family-wise error rate (FWER), which is the proba-
bility that at least one false positive error will be
made. Control of the FWER is useful for situations
where the aim is to identify a small number of genes
that are truly differentially expressed. However, in
the case of exploratory type microarray analyses,
approaches to control the FWER are too strict and
will lead to missed findings. Here it is more appro-
priate to emphasize the proportion of false positives
among the identified differentially expressed genes.
The false discovery rate (FDR), introduced by Ben-
jamini and Hochberg,11 is essentially the expectation
of this proportion and is widely used for microar-
ray analyses. Similarly, the false nondiscovery rate
(FNR) can be defined as the expected proportion of
false negatives among the genes identified as not dif-
ferentially expressed (Genovese and Wasserman12).
We are unable to estimate the various error rates
using cross-validation, as the class of origin of each
observation (gene) is unknown; that is, we do not
know whether a gene is differentially expressed or
not. Thus we have to estimate these error rates using
methods developed for unclassified data in terms of

their posterior probabilities of class membership, as
discussed in McLachlan13 (Sec. 10.5.2).

2.4. Estimated FDR

In practice, we do not know π0 nor the density
f(wj), and perhaps not f0(wj). In some instances,
the latter may be known as we may have chosen our
test statistic so that its null distribution is known
(or known to a good approximation). For example,
we shall work with the oneway analysis of variance
F -statistic, which can be so transformed that its null
distribution is approximately the standard normal.

Alternatively, null replications of the test statis-
tic might be created, for example, by the bootstrap
or permutation methods. We shall estimate the pop-
ulation density f(w) by maximum likelihood after
its formulation using a mixture model. But it can
be estimated also nonparametrically by its empirical
distribution based on the observed test statistics wj .

If π̂0, f̂0(wj), and f̂(wj) denote estimates of
π0, f0(wj), and f(wj), respectively, the gene-specific
summaries of differential expression can be expressed
in terms of the estimated posterior probabilities
τ̂0(wj), where

τ̂0(wj) = π̂0f̂0(wj)/f̂(wj) (j = 1, . . . , N) (5)

is the estimated posterior probability that the jth
gene is not differentially expressed. An optimal rank-
ing of the genes can therefore be obtained by ranking
the genes according to the τ̂0(wj) ranked from small-
est to largest. A short list of genes can be obtained
by including all genes with τ̂0(wj) less than some
threshold co or by taking the top No genes in the
ranked list.

Suppose that we select all genes with

τ̂0(wj) ≤ co. (6)

Then an estimate of the FDR is given by

F̂DR =
N∑

j=1

τ̂0(wj) I[0,co](τ̂0(wj))/Nr, (7)

where

Nr =
N∑

j=1

I[0,co](τ̂0(wj)) (8)

is the number of the selected genes in the list. Here
IA(w) is the indicator function that is one if w

belongs to the interval A and is zero otherwise.
Thus we can find a data-dependent co ≤ 1 as

large as possible such that F̂DR ≤ α. This assumes
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that there will be some genes with τ̂0(wj) ≤ α, which
will be true in the typical situation in practice. This
bound is approximate due to the use of estimates in
forming the posterior probabilities of nondifferential
expression and so it depends on the fit of the densi-
ties f0(wj) and f(wj).

2.5. Bayes risk in terms of estimated
FDR and FNR

The Bayes prediction rule minimizes the risk of an
allocation defined by Eq. (3). We can estimate the
error of a false positive e01 and the error of a false
negative e10 by

ê01 =
N∑

j=1

τ̂0(wj)ẑ1j

/ N∑
j=1

τ̂0(wj) (9)

and

ê10 =
N∑

j=1

τ̂1(wj)ẑ0j

/ N∑
j=1

τ̂1(wj) (10)

respectively, where ẑ0j is taken to be zero or one
according as to whether τ̂0(wj) is less than or greater
than c in (4), and ẑ1j = 1−ẑ0j . Also, we can estimate
the prior probability π0 as

π̂0 =
N∑

j=1

τ̂0(wj)/N. (11)

On substituting these estimates (9) to (11) into the
right-hand side of (3), the estimated risk can be writ-
ten as

R̂isk = (1 − c)ω̂F̂DR + c(1 − ω̂)F̂NR, (12)

where

F̂DR =
N∑

j=1

τ̂0(wj)ẑ1j/
N∑

j=1

ẑ1j (13)

and

F̂NR =
N∑

j=1

τ̂1(wj)ẑ0j/

N∑
j=1

ẑ0j (14)

are estimates of the FDR and FNR respectively, and
where

ω̂ =
N∑

j=1

ẑ1j/N

= Nr/N (15)

is an estimate of the probability that a gene is
selected. (Note that (13) is a restatement of (7).)

Thus unlike the tests or rules that are designed
to control just the FDR, the Bayes rule approach in
its selection of the genes can be viewed as control-
ling a linear combination of the FDR and FNR. The
balance between the FDR and the FNR is controlled
by the threshold c.

3. Estimation of Posterior Probabilities

3.1. Mixture model approach

We choose our test statistic Wj so that it has a nor-
mal distribution under the null hypothesis Hj that
the jth gene is not differentially expressed. For exam-
ple, if Fj denotes the usual test statistic (see Cochran
and Cox,14) in a one-way analysis of variance of M

observations from g classes, then we follow Broët
et al.15 and transform the Fj statistic as

Wj =

(
1 − 2

9(M−g)

)
F

1
3

j −
(
1 − 2

9(g−1)

)
√

2
9(M−g) F

2
3

j + 2
9(g−1)

(16)

The distribution of the transformed statistic Wj

is approximately a standard normal under the null
hypothesis that the jth gene is not differentially
expressed (that is, given its membership of popula-
tion G0). As noted in Broët et al.15 it is remarkably
accurate for (M −g) ≥ 10. With this transformation,
we can take the null density f0(wj) to be the stan-
dard normal density (which has mean zero and unit
variance). In order to estimate the mixing proportion
π0 and the mixture density f(wj), we postulate it to
have the h-component normal mixture form

f(wj) =
h−1∑
i=0

πiφ(wj ; µi, σ2
i ), (17)

where we specify µ0 = 0 and σ2
0 = 1. In

(17), φ(wj ; µi, σ2
i ) denotes the normal density with

mean µi and variance σ2
i . We suggest starting with

h =2, adding more components if considered nec-
essary as judged using the Bayesian Information
Criterion (BIC).

3.2. Use of P -values

An an alternative to working with the test statis-
tic Wj , we could follow the approach of Allison
et al.8 and use the associated P -value pj . We can find
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these P -values using permutation methods whereby
we permute the class labels. Using just the B

permutations of the class labels for the gene-specific
statistic Wj , the P -value for Wj = wj is assessed as

pj =
#{b : w

(b)
0j ≥ wj}
B

, (18)

where w
(b)
0j is the null version of wj after the bth per-

mutation of the class labels.

3.3. Link with FDR

Suppose that τ0(w) is monotonic (decreasing in w).
Then the rule (6) for declaring the jth gene to be
differentially expressed is equivalent to

w ≥ wo, (19)

where wo is the value of w such that τ0(wo) = co.
The associated FDR, actually the positive FDR
(Storey16), is given by

π0
1 − F0(wo)
1 − F (wo)

. (20)

Using (17), the positive FDR can be approximated
using the fully parametric estimate for F (wo),

F̂ (wo) = π0Φ(wo) +
h−1∑
i=1

π̂iΦ(
wo − µ̂i

σ̂i
) (21)

in the right-hand side of (20).
In the case where τ0(wj) is monotonic (decreasing

in wj), the inequality

τ0(wj) < c0 (22)

is equivalent to

wj > w0 (23)

for some threshold value w0 of wj . From (23), the
(positive) FDR can be expressed as

π0
1 − F0(wo)
1 − F (wo)

. (24)

Alternatively, we could choose wo, and hence co,
so that (20) is equal to α. It thus also has an inter-
pretation in terms of the q-value of Storey.16 For if
all genes with τ0(w) ≤ co are declared to be differ-
entially expressed, then the FDR will be bounded
above by α; see Efron et al.10

Concerning the link of this approach with the
tail-area methodology of Benjamini and Hochberg,11

suppose that the right-hand side of (20) is monotonic

(decreasing) in w0. Then as shown explicitly in Wit
and McClure,17 if we set π0 equal to one and estimate
F (w0) by its empirical distribution in the right-hand
side of (20), the consequent rule is equivalent to the
Benjamini-Hochberg procedure.

4. Application to Hedenfalk Breast
Cancer Data

We analyze the publicly available cDNA microar-
ray data set of Hedenfalk et al.5 They studied the
gene expression profiles of tumors from women with
hereditary BRCA1- (n1 = 7) and BRCA2-mutation
positive cancer (n2 = 8), here referred to as BRCA1
and BRCA2, as well as sporadic cases of breast
cancer.

Hedenfalk et al. initially considered genes which
could differentiate between the three types of breast
cancer (BRCA1, BRCA2 and sporadic). They com-
puted a modified F -statistic and used it to assign a
P -value to each gene. A threshold of α = 0.001 was
selected to find 51 genes from a total of N = 3, 226
that show differential gene expression. One of the
main goals of the study was to identify the genes
differentially expressed between the BRCA1 and
BRCA2 cancers. They used a combination of three
methods (modified t-test, weighted gene analysis
and mutual-information scoring), and identified 176
significant genes.

Here we consider the gene expression data from
the BRCA1 and BRCA2 tumors only. We use a sub-
set of 3,170 genes, having eliminated genes with one
or more measurements greater than 20, which was
several interquartile ranges away from the interquar-
tile range of all the data (as in Ref. 6). We then
logged the data and standardised each patient’s
data to have mean 0 and variance 1. We applied
our decision-theoretic approach to this data set.
In Table 1, we report the estimated values of the
FDR, calculated using (13), for various levels of the
threshold co.

Table 1. Estimated FDR for various levels of co.

co Nr F̂DR

0.5 1086 0.27
0.4 817 0.21
0.3 584 0.16
0.2 378 0.11
0.1 158 0.06
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It can be seen that if we were to declare the
jth gene to be differentially expressed if τ0(wj) ≤
0.1, then 158 genes would be selected as being
significant, with an estimated FDR equal to 0.06.
The prior probability of a gene not being differen-
tially expressed (π0) was estimated to be 0.465. We
found that the above estimates, based on the semi-
parametric version (13), were the same (to the sec-
ond decimal place) as those calculated using the fully
parametric estimate given in (20).

Of these 158 significant genes, 92 are over-
expressed in BRCA1 tumors relative to BRCA2.
Hedenfalk et al.5 and also Storey and Tibshirani6 in
their further analysis of this data set, found too that
a large block of genes are over-expressed in BRCA1.
In particular, these included genes involved in DNA
repair and cell death, such as MSH2 (DNA repair)
and PDCD5 (induction of apoptosis), also identified
by us. In their paper, Hedenfalk et al. noted that the
finding of these over-expressed genes suggests that
the BRCA1 mutation leads to a constitutive stress-
type state.

Storey and Tibshirani identified 160 genes to
be significant for differential expression between
BRCA1 and BRCA2 by thresholding genes with
q-values less than or equal to α = 0.05 (an arbitrary
cut-off value). Here the q-value of a particular gene
is the expected proportion of false positives incurred
when calling that gene significant, so that 8 of their
160 genes were expected to be false positives.

On comparing our 158 genes with the 160 iden-
tified by Storey and Tibshirani, we found that there
were 122 genes in common. Of the 36 excluded genes,
10 were included in the Hedenfalk set of 176. The
functional classes (where known) of the remaining
26 genes are shown in Table 2.

Of the 38 genes found by Storey and Tibshirani
but not by the present approach, 28 were included
in the Hedenfalk set.

We also applied the SAM (v2.0) method of
Tusher et al.2 to the data set. Using an FDR cut-
off of 5%, 210 genes were selected as significant. Of
these, 109 were in common with the 158 genes cho-
sen by us, and 132 in common with the 160 genes as
picked by Storey and Tibshirani.

Broët et al.7 recently also applied a mixture
model appproach to identify differentially expressed
genes in this data set. However, they implemented
a Bayesian approach, in contrast to the frequentist

Table 2. Functional classes for uniquely identified genes.

Functional class Gene identifier

Kinase Activity MAST4, ITPK1,
(plus protein or nucleotide PRKCBP1,
binding) MADD
Nucelotide Binding RMB17, HARS
Protein Binding CLTC, TNFAIP1
Receptor activity/ ITGB5,
Protein Binding ITGA3
Signal transduction/ RHOC
nucleotide binding
Hydrolase activity RNPEP, HDAC3,

GNS
Protease inhibitor A2M
Oxidoreductase/Dehydrogenase
activity

HSD17B4, ACOX1

Transcription factor activity GATA3, ZNF500
Unknown LRBA, PPP1R15A

approach as applied here. They obtained a slightly
different estimate for π0 of 0.52, hence rejecting
52% of the genes as not differentially expressed, as
opposed to our value of 46.5%. In their approach,
they did not constrain the variance of the first
component to be one because it presents computa-
tional problems implementing the Bayesian solution
via MCMC methods. However, using the frequentist
approach, we were able to fix the variance to be one.
As Broët et al.’s list of genes was not made available,
we were unable to compare our gene list to theirs.

5. Simulation Study

Allison et al.8 were interested in looking at the
effect of the assumption of independently distributed
expression levels of the genes. To this end, they
generated gene expression levels for M experiments
(with M/2 “mice” per experimental group) and for
N = 3000 genes. The M vectors yj of dimension N

were generated randomly from a multivariate normal
distribution with covariance matrix specified to be

Σ = σ2B ⊗ I6 (25)

and

B = 1500 1T
500ρ + (1 − ρ)1500.

Here 1500 denotes the unit vector of length 500 and
Im is the m × m identity matrix.

For the simulations the common variance was
σ2 = 4, while the correlation ρ varied over three
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values of 0 (independence), 0.4 (moderate depen-
dence), and 0.8 (strong dependence). They noted
that this covariance structure seems plausible since
groups of genes are likely to be coexpressed, but
it is unlikely that a particular gene is correlated
with all other genes. For 20% of the genes (600 ran-
domly selected), a true mean difference in expression
between the two classes of mice was incorporated
by adding d to the gene measurements yj from
j = 1

2M + 1 through to M .
We applied our mixture model approach, using

d = 0, 4, 8 and M = 10. As before, we transformed
the pooled t-statistic according to (16), with Fj = t2j .
The two cases of d = 4, 8 (where there is a true
mean difference between the groups), with varying
levels of dependence, are shown in Figs. 1–6. We fit-
ted normal components with the restriction that one
component must be N(0, 1), that is, a theoretical
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null component. In Figs. 1–6, these components are
superimposed on the same histograms. Figures 7–12
are similar to Figs. 1–6 except that we do not
apply restrictions to the null component of the
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Fig. 8. Moderate dependence and mean difference of 4
with empirical null.
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Fig. 9. Strong dependence and mean difference of 4 with
empirical null
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Fig. 10. Independence and mean difference of 8 with
empirical null.
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Fig. 11. Moderate dependence and mean difference of 8
with empirical null.
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Fig. 12. Strong dependence and mean difference of 8
with empirical null.

two-component normal mixture model fittted.
Following Efron,18 we call the component with the
smaller mean the empirical null component.

In each plot, the first component (the null compo-
nent) corresponds to the nondifferentially expressed
genes (NDE) and the second component to the dif-
ferentially expressed genes (DE).

It can be seen that as the correlation increases,
the fit of the theoretical null component becomes
poorer. In the case of d = 8 for which the Maha-
lanobis distance (∆) between the means of the DE
and NDE genes is large (∆ = 8/2 = 4), the empirical
null provides an improved fit to the NDE genes. But
fitting either a theoretical or empirical null compo-
nent gives a π0 value of almost exactly 0.8, that is,
the true π0 value.

When the mean difference between the DE and
NDE genes is only d = 4 (that is, the Mahalanobis
distance is only moderate with ∆ is 2), it can be seen
that the fit of the theoretical null component is very
poor in the case of strong correlation (ρ = 0.8). In
this case, it can be seen that the empirical null pro-
vides an improved fit to the NDE genes. For moder-
ate correlation (ρ = 0.4) the fit of the empirical null
is quite poor, but it is not needed, as the fit of the
theoretical null is adequate.

The t-statistic, tj , transformed according to (16)
has a minimum value of −7/3

√
2 when Fj = 0.

Thus some of the histograms appear to taper off
sharply at the left hand end of the plots. This
has led McLachlan et al.19 to work with a normal
score-based statistic, which is similar to that used in
Efron.18

6. Conclusions

We use a mixture model-based approach to finding
differentially expressed genes in microarray data, and
show that for the Hedenfalk data set this approach
can provide useful information beyond that of other
methods.

We consider also a simulation study, with vary-
ing levels of correlation between groups of genes and
in the mean difference, d, in their expression lev-
els between the two classes. Not surprisingly, it is
demonstrated that for high values of d, the correla-
tion has little impact on the detection of differentially
expressed genes. However, for moderate values of d,
the correlation can affect this detection as the theo-
retical null distribution would not appear to fit the
observed distribution of the null genes. In situations
where this is the case, an improved fit is given by
the so-called empirical null distribution obtained by
relaxing the imposition of a zero mean and unit vari-
ance on the null component in the two-component
mixture model fitted to the data.

Finally, it is worth noting that genes which score
as most significant using standard methods for multi-
ple hypothesis testing may not necessarily be of most
biological relevance (see Ref. 7). Genes with more
subtle changes in their expression levels, indicating
that they are more tightly regulated, may be of more
importance in the biology of tumor formation.
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