
Introduction
In recent times, there has been an explosion in the

development of comprehensive, high-throughput methods
for molecular biology experimentation. Deoxyribonucleic
acid microarray technologies, such as the Affymetrix
GeneChip or spotted (cDNA or oligonucleotide) arrays,
provide a means for measuring tens of thousands of genes
simultaneously. For a history of microarray development
refer to McLachlan et al. (2004). An important and common
problem in microarray experiments is the detection of genes
that are differentially expressed in a given number of classes
C1,…,Cg. The classes may correspond to tissues (cells) that
are at different stages in some process, in distinct
pathological states, or under different experimental
conditions. By comparing gene expression profiles across
these classes, researchers gain insight into the roles and
reactions of various genes. A comparison can be drawn, for
example, between healthy cells and cancerous cells within
subjects in order to learn which genes tend to be over or
underexpressed in the diseased cells. Regulation of such
genes could produce effective cancer treatment and/or
prophylaxis. As this problem concerns the selection of
significant genes from a large pool of candidate genes, it
needs to be carried out within the framework of multiple
hypothesis testing. In this paper, we focus on the use of
mixture models to handle the multiplicity issue.

There is now an extensive range of literature on the
problem of detecting differentially expressed genes in
microarray data. Dudoit and Fridlyand (2002) conducted one
of the first studies to recognise the importance of the
multiplicity problem as one of the key statistical issues in
microarray data analysis. An excellent review of this
problem has been given recently by Dudoit et al. (2003).

The simplest method for identifying differentially
expressed genes is to evaluate the log ratio between
2 classes (or averages of the log ratios when there are
replicates) and consider all genes that differ by more than
an arbitrary cutoff value to be differentially expressed
(Schena et al. 1996; DeRisi et al. 1997). This test,
sometimes called a fold change, is not a statistical test, and
there is no associated level of confidence in the designation
of a gene as being differentially expressed or not
differentially expressed (Cui and Churchill 2003). Also,
this method ignores the variance of the replicates in each
class.

Statistical significance of the differential expressions can
be tested by performing a test for each gene. When many
hypotheses are tested, the probability that a type I error
(a false positive error) is committed increases sharply with
the number of hypotheses. This multiplicity problem is not
unique to microarray analysis, but its magnitude where each
experiment may involve many thousands of genes
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dramatically intensifies the problem. We shall consider this
further, but first we need to introduce some notation.

Notation
Although biological experiments vary considerably in

their design, the data generated by microarray experiments
can be viewed as a matrix of expression levels. For
M microarray experiments (corresponding to M tissue
samples), where we measure the expression levels of N genes
in each experiment, the results can be represented by an
N × M matrix. Typically, M is no more than 100 (usually
much less in the present context), while the number of genes
N is of the order of 104. The expression signature is the
expression levels of the N genes for each tissue. Conversely,
the expression profile is the expression levels across the
different tissue samples for each gene. The M tissue samples
might correspond to each of M different patients or, say, to
samples from a single patient taken at M different time
points. The expression levels are taken to be the measured
(absolute) intensities for the Affymetrix platform, and the
ratios of the intensities for the Cy5-channel (red) images and
Cy3-channel (green) images for spotted (cDNA or
oligonucleotide) arrays (e.g. Dudoit and Fridlyand 2002).
The M tissue samples on the N available genes are classified
with respect to g classes or conditions. We let yijk denote the
(logged) gene expression level for the kth replicate of the jth
gene in the ith class (k = 1,…,nj; j = 1,…,N; i = 1,…,g), where
M = n1 +…+ ng denotes the total number of microarrays. It
is assumed that these expression levels have been
preprocessed with adjustment for array effects. For
simplicity, we shall take g = 2, but the methodology to be
described applies in the case of multiple classes.

For gene j, we let Hj = 0 denote that the null hypothesis of
no association between its expression level and its class
membership holds, and we let Hj = 1 if it does not hold
(j = 1,…,N).

Test of a single hypothesis
A commonly used statistic for testing for a difference in

the means of 2 classes is the well-known Student’s t-statistic
defined by:

They used the modified t-statistic by adding a constant  to
the denominator of equation 1 to give:

tj =                           (1)
y1j – y2j

sj   1/n1 + 1/n2

where y–ij and s2
ij denote the sample mean and variance of the

ni replicates yijk (k = 1,…,ni)for the j th gene in the ith class
Ci and s2

j = {(n1 – 1)s2
1j + (n2 – 1)s2

2j}/(M – 2) is the pooled
within-class sample variance.

Because of the large number of genes in the microarray
experiments, there will always be some genes with a very
small sum of squares across replicates, so that their
(absolute) t-values will be very large whether or not their
averages are large. Tusher et al. (2001) have proposed a
refinement that avoids this difficulty.

(2)tj =                                  
y1j – y2j

sj   1/n1 + 1/n2 + a0

The constant a0 was chosen to make the coefficient of
variation of tj about constant as a function of sj . This has the
added effect of dampening values of tj that arise from genes
whose expression is near to zero.

In testing a single hypothesis on the jth gene, 2 types of
errors can be committed: reject the null hypothesis when it
holds (a type I error), or retain the null hypothesis when it does
not hold (a type II error). With the traditional approach to the
test of a single hypothesis, the aim is to maximise the power (1
minus the probability of making a type II error), while keeping
the probability of a type I error at or below a specified level.

We let Wj denote a test statistic, such as the square of the
t-statistic (equation 1), for testing the null hypothesis that the
jth gene is not differentially expressed, where the null is to be
rejected for sufficiently large (positive) values. In the case of
an arbitrary number g of classes, we might take Wj to be the
usual one-way analysis of variance F-statistic, which reduces
to the square of the t-statistic in the case of g = 2.

An advantage of working with this F-statistic is that it can
be easily transformed so that its null distribution is well
approximated by the standard normal distribution.

A gene-specific summary is given by the observed value
Wj of the test statistic Wj or the associated P-value, pj, which
can be expressed as pj = pr{Wj ≥ wj | Hj = 0}.

Multiple hypothesis testing
The aim is to detect whether the expression levels of some

of the thousands of genes are different in class C1 than in
class C2. In the context of statistical inference, we can
formulate the problem as a multiple hypothesis testing
problem. When many hypotheses are tested, the probability
that a type I error (a false positive error) is committed
increases sharply with the number of hypotheses. In practice,
the number of genes N can be very large. Thus if we were to
carry out separate tests in the case of N = 6000 genes, the
number of false positives could be quite large. For instance,
if all N = 6000 genes were not differentially expressed, then
the expected number of false positives would be 300. Thus
there is a need to control the false positive rate.

The Bonferroni method is perhaps the best known method
for dealing with multiple testing. It controls the family-wise
error rate (FWER), which is the probability that at least
1 false positive error will be committed. The test of each null
hypothesis is controlled so that the probability of a Type I
error is less than or equal to a/N for some α. This ensures that
the overall FWER is less than or equal to α. But control of
the FWER is only appropriate in situations where the intent
is to identify only a small number of genes that are truly
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different. Otherwise, the severe loss of power in controlling
the FWER is not justified (Reiner et al. 2003). Instead, it is
more appropriate to emphasise the proportion of false
positives among the identified differentially expressed
genes. The expectation of this proportion is essentially the
false discovery rate (FDR) of Benjamini and Hochberg
(1995). The FDR is defined formally as:

Two-component mixture model framework
Definition of model

In this paper, we focus on a decision–theoretic approach
to the problem of finding genes that are differentially
expressed. We use a prediction rule approach based on a
2-component mixture model as formulated by Lee et al.
(2000) and Efron et al. (2001). We let G denote the
population of genes under consideration. It can be
decomposed into G0 and G1, where G0 is the population of
genes that are not differentially expressed, and G1 is the
complement of G0 that is, G1 contains the genes that are
differentially expressed.

We let the random variable Zij be defined to be 1 or 0
according as the jth gene belongs to Gi or not (i = 0,1;
j = 1,…N). We have defined Hj to be 0 or 1 according as to
whether the null hypothesis of no differential expression
does or does not hold for the jth gene. Thus Z1 j is 0 or 1
according as to whether Hj is 0 or 1.

The prior probability that the ith gene belongs to G0 is
assumed to be π0 for all j. That is, π0 = pr{Hj = 0} and
π1 = pr{Hj = 1}. Assuming that the test statistics Wj all have
the same distribution in Gi, we let fi(wj) denote the density of
Wj in Gi(i = 1,2). The unconditional density f (wj) of Wj is
given by the 2-component mixture model:

f(wj) = π0 f0(wj) + π1 f1(wj). (6)

Using Bayes Theorem, the posterior probability that the
jth gene is not differentially expressed (that is, belongs to
G0) is given by:

τ0(wj) = π0 f0(wj) / f (wj) (j = 1,…N). (7)

In this framework, the gene-specific posterior
probabilities τ0(wj) provide the basis for optimal statistical
inference about differential expression.

This approach is Bayesian in that it uses Bayes theorem,
but it is not Bayesian in the estimation process. That is, we
shall not make any prior assumptions about the mixing
parameter π0, nor about the parameters in the forms that we
shall adopt for the densities f0(wj) and f (wj).

The posterior probability τ0(wj) has been termed the local
false discovery rate (local FDR) by Efron and Tibshirani
(2002). As noted by Efron (2004), it can be viewed as an
empirical Bayes version of BH methodology, using densities
rather than tail areas.

Bayes decision rule
Let e01 and e10 denote the 2 errors when a rule is used to

assign a gene as being differentially expressed or not, where
e01 is the probability of a false positive and e10 is the
probability of a false negative. Then, the risk is given by:

Risk = (1 – c)π0e01 + cπ1e10 (8)

where (1 – c) is the cost of a false positive. As the risk
depends only on the ratio of the costs of misallocation, they
have been scaled to add to 1 without loss of generality.

Detecting differentially expressed genes

(3)FDR = E �           �N01

Nr <1

where E refers to the expectation operator and Nr ∨ 1 =
max(Nr ,1). Here Nr is the number of rejected hypotheses and
N01 is the number of false positives among them. The
positive FDR is equal to the FDR divided by the probability
that Nr is greater than zero (Storey 2002).

The false non-discovery rate (FNR) is given by:

(4)FNR = E �                     �N10

( N – Nr ) <1

where N10 is the number of false negatives.

Benjamini-Hochberg procedure
Benjamini and Hochberg (1995) proved by induction that

the following procedure (referred to here as the BH
procedure) controls the FDR at level α when the P-values
following the null distribution are independent and
uniformly distributed. The BP procedure is as follows:

Let p(1) ≤ … ≤ p(N) be the observed P-values.
Calculate

(5) k̂ = arg max{k :p(k) < αk /N}.
1≤k≤N

If k̂ exists, then reject null hypotheses corresponding to
p(1) ≤ … ≤ p(k̂). Otherwise, reject nothing.

Benjamini and Yekutieli (2001) showed that FDR ≤ αN0/N
for positively dependent test statistics as well. Since the BH
procedure controls the FDR at a level too low by a factor of
N0 /N, it is natural to try to estimate N0 and use α* = α(N/N0)
instead of α to gain more power.

Example of Bonferroni and BH tests
Suppose that 10 independent hypothesis tests are carried

out leading to the following ordered P-values: 0.0001,
0.0035, 0.0069, 0.0083, 0.019, 0.3463, 0.3964, 0.5488,
0.6124, 0.9871. With α = 0.05, the Bonferroni test rejects
any hypothesis whose P-value is less than α/10 = 0.005. Thus
only the first 2 hypotheses are rejected. For the BH test, we
find the largest k such that P(k) < kα/N. Here k̂ = 5, and so
we reject the first 5 hypotheses.

Recently, a number of key papers have been written on
controlling the FDR (Genovese and Wasserman 2002:
Storey 2002; Storey and Tibshirani 2003a, 2003b; Black
2004; Cox and Wong 2004; Storey et al. 2004). Hence
methods for the detection of differentially expressed genes
are still evolving.
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The Bayes rule, which is the rule that minimises the risk
(equation 8), assigns a gene to G1 if

τ0(wj) ≤ c; (9)

otherwise, the jth gene is assigned to G0. In the case of equal
costs of misallocation (c = 0.5), the cutoff point for the
posterior probability τ0(wj) in equation 9 reduces to 0.5.

Estimated FDR
In practice, we do not know π0, nor the density f (wj), and

perhaps not f0(wj). In some instances, the latter may be
known as we may have chosen our test statistic so that its null
distribution is known (or known to a good approximation).
For example, we shall work with the one-way analysis of
variance F-statistic, which can be so transformed that its null
distribution is about the standard normal. In some situations,
we might wish to estimate the null density. Efron (2004) has
demonstrated that the theoretical null distribution in
microarray experiments may not always be appropriate due
to experimental noise.

Alternatively, null replications of the test statistic might
be created, by the bootstrap or permutation methods. We
shall estimate the population density f (w) by maximum
likelihood after its formulation using a mixture model. But it
can be estimated also nonparametrically by its empirical
distribution based on the observed test statistics wj.

If π̂0, f̂ 0(wj) and f̂ 1(wj) denote estimates of π0, f0(wj) and
f1(wj), respectively, the gene-specific summaries of
differential expression can be expressed in terms of the
estimated posterior probabilities τ̂0(wj), where:

situation in practice. This bound is approximate due to the
use of estimates in forming the posterior probabilities of
nondifferential expression and so it depends on the fit of the
densities f0(wj) and f(wj).

Bayes risk in terms of estimated FDR and FNR
The Bayes prediction rule minimises the risk of an

allocation defined by equation 8. We can estimate the error
of a false positive e01 and the error of a false negative e10 by:

and

respectively, where ẑ0j is taken to be 0 or 1 according as to
whether τ̂0(wj) is less than or greater than c in equation 9, and
ẑ1j = 1 – ẑ0 j. Also, we can estimate the prior probability π̂0
as:

On substituting these estimates in equations 13–15 into
the right-hand side of equation 9, the estimated risk can be
written as:

where

and

are estimates of the FDR and FNR, respectively, and where

is an estimate of the probability that a gene is selected.
Thus unlike the tests or rules that are designed to control

just the FDR, the Bayes rule approach in its selection of the
genes can be viewed as controlling a linear combination of
the FDR and FNR. The balance between the FDR and the
FNR is controlled by the threshold c. An early reference on
the Bayes rule in the context of hypothesis testing can be
found in Lehmann (1959).

Estimation of posterior probabilities
Previous work

In previous work on this problem, Efron et al. (2001)
adopted an empirical Bayes approach without any
assumptions being made. The quantities f0(wj) and f(wj)

(10)τ̂0(wj) = π̂0 f̂ 0 (wj) / f̂ (wj) ( j = 1,…,N )

is the estimated posterior probability that the jth gene is not
differentially expressed. An optimal ranking of the genes can
therefore be obtained by ranking the genes according to the
τ̂0(wj) ranked from smallest to largest. A short list of genes
can be obtained by including all genes with τ̂0(wj) less than
some threshold c0 or by taking the top N0 genes in the ranked
list.

Suppose that we select all genes with τ̂0(wj) ≤ c0, then an
estimate of the FDR rate is given by:

(11) FD̂R = Σ τ̂0 (wj)I [0,c
0
] (τ̂0(wj))/Nr

j=1

N

(12)Nr = Σ I [0,c
0
] (τ̂(wj))

j=1

N

(13)ê01 = Σ τ̂0 (wj) ẑ1j / Σ τ̂0 (wj)
j=1

N

j=1

N

(14)ê10 = Σ τ̂1 (wj) ẑ0 j / Σ τ̂1 (wj)
j=1

N

j=1

N

(15)π0 = Σ τ̂0 (wj) /N
j=1

N

(16)Rîsk = (1 – c)ω̂FD̂R + c (1 – ω̂)FN̂R 

(17)FD̂R = Σ τ̂0 (wj) ẑ1j / Σ ẑ1j 
j=1

N

j=1

N

(18)FN̂R = Σ τ̂1 (wj) ẑ0 j / Σ ẑ0 j 
j=1

N

j=1

N

(19)ω̂ = Σ ẑ1j / N

   = Nr /N

j=1

N

where

is the number of the selected genes in the list. Here IA(w) is
the indicator function that is 1 if w belongs to the interval A
and is zero otherwise.

Thus we can find a data-dependent c0 ≤ 1 as large as
possible such that FD̂R ≤ α. This assumes that there will be
some genes with τ̂0(wj) ≤ α which will be true in the typical
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were estimated using the empirical distributions for the w(b)
0j

and the wj, where w(b)
0j denotes the value of wj obtained on the

bth random permutation of the class labels. In order to
estimate π0, which is not estimable in a parametric setting,
they effected this using the inequality:

0 and unit variance). In order to estimate the mixing
proportion π0 and the mixture density f(wj), we postulate it to
have the h-component normal mixture form:

Detecting differentially expressed genes

(20)π0 ≤ min{f(w)/f0(w)}.
w

(21)Wj =                                                           

2
9(M – g)

2
9(g – 1)

(1 –                   )Fj  – (1–                 )3
1

2
9(M – g)

2
9(g – 1)Fj  +

–

3
2–

(22)f (wj) = Σ πiφ(wj ;µi ,σ
2
i )

i=0

h–1

(23)pj =    
#{b :w0j  ≥ wj}

B

(b)

(24)f (u;α1,α2) = {uα1– 1(1 – u)α2 – 1}/B(α1,α2)I (0,1)(u)
 

(25)B (α1,α2) = Γ (α1) Γ (α2) / Γ (α1 + α2) .
 

The distribution of the transformed statistic Wj is about a
standard normal under the null hypothesis that the jth gene is
not differentially expressed (that is, given its membership of
population G0). As noted in Broët et al. (2004), it is
remarkably accurate for (M – g) ≥ 10 (Johnson and Kotz
1970).

With this transformation, we can take the null density
f0(wj) to be the standard normal density (which has mean of

Do et al. (2003) proposed an extension to the
nonparametric approach of Efron et al. (2001) by adopting a
fully model-based approach. While Efron’s method (Efron
et al. 2001) proceeds by plugging in point estimates, the fully
model-based approach of Do et al. (2003) constructs a
probability model for the unknown mixture, allowing
investigators to deduce the desired inference about
differential expression as posterior inference in that
probability model. Dirichlet process mixture models are
chosen to represent the probability model for the unknown
distributions. Markov chain Monte Carlo (MCMC) posterior
simulation was developed to generate samples from the
relevant posterior and posterior predictive distributions.
Newton et al. (2001), Kendziorski et al. (2003), Newton and
Kendziorski (2003) and Newton et al. (2004) have adopted
parametric empirical Bayes approaches to the problem of the
detection of differential expression.

Previously, Pan (2002, 2003) and Zhao and Pan (2003)
considered a nonparametric approach, which they called the
mixture model method (MMM). They advocated modelling
the densities f0(wj) and f (wj) in the 2-component mixture
model by normal mixtures. With this mixture model method
approach, the likelihood ratio test statistic, λ(Wj) = f0(Wj) /
f (Wj), can be used to test the null hypothesis that the jth gene
is not differentially expressed.

Mixture model approach
We choose our test statistic Wj so that it has a normal

distribution under the null hypothesis that the jth gene is not
differentially expressed. For example, if Fj denotes the usual
test statistic in a one-way analysis of variance with g classes,
then we follow Broët et al. (2004) and transform the Fj
statistic as:

where we specify µ0 = 0 and σ2
0 = 1. In equation 22,

φ(wj;µi ,σ
2
i ) denotes the normal density with mean µi and

unit variance σ2
i. We suggest starting with h = 2, adding more

components if considered necessary as judged using the
Bayesian Information criterion (BIC).

Use of P-values
An alternative to working with the test statistic Wj , we

could follow the approach of Allison et al. (2002) and use the
associated P-value pj. We can find these P-values using
permutation methods whereby we permute the class labels.
Using just the B permutations of the class labels for the gene-
specific statistic Wj, the P-value for Wj = wj is assessed as

where w(b)
0j is the null version of wj after the bth permutation

of the class labels. The distribution of pj has support on the
unit interval, and so its distribution can be represented by a
mixture of β distributions of the first kind (Diaconis and
Ylvisaker 1985). Under the null hypothesis of no differential
expression for the jth gene, pj will have a uniform
distribution on the unit interval; that is the β1,1 distribution.

The βα1,α2
density is given by

where

Allison et al. (2002) discusses the fitting of mixtures of
βα1,α2

components to the values of pj for the N genes,
including the caution that needs to be exercised in
interpreting the existence of modes in the fitted mixture
density as a consequence of the correlation between some of
the pj values. If the null distribution of Wj is calculated just
on the data for the jth gene, as in the formation of pj
(equation 23), it suffers from a granularity problem. For
example, there are only 10 ways to divide 6 microarrays into
2 equal sized groups. The null distribution has a resolution
on the order of the number of permutations. If we perform B
permutations, then the P-value will be estimated with a
resolution of 1/B. If we assume that each gene has the same
null distribution and combine the permutations, then the
resolution will be 1/(NB) for the pooled null distribution.
Using the latter, the P-value for the jth gene can be
estimated by:
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where w(b)
0i is the value of wj obtained on the bth permutation

of the class labels (i = 1,…,N).
The drawback of pooling the null statistics w(b)

0j across the
genes to assess the null distribution of Wj is that the
distributions used will be different, unless all Hj are zero. To
illustrate this, we performed B = 1000 permutations of the
class labels for the pooled 2-sample t-statistic. This was
based on 2 samples consisting of n1 = 7 and n2 = 8
observations, each simulated from the standard normal
distribution. It can be seen in Figure 1 that the histogram of
the 1000 values of the t-statistic is close to its true null
density given by the t-distribution with 13 degrees of
freedom. To consider a case where the null hypothesis of no
differential expression does not hold, we modified the
simulated data so that the second sample of n2 = 8
observations now had a mean of 10 and a variance of 9. The
histogram of the 1000 values of the t-statistic obtained by
permuting the class labels is given in Figure 2. On comparing
these values with the true null density, it can be seen that they
are more dispersed now as a consequence that the null
hypothesis does not hold. Efron and Tibshirani (2002)
suggest that the effect of this spurious component of variance
be lessened by using only balanced permutations. X. Guo
and W. Pan (unpublished data) suggest using a weighted
permutation method to dampen the effect of permuted
samples corresponding to genes that are judged to be
differentially expressed.

Link with BH methodology
In this section, we consider the link of the approach based

on the Bayes rule equation 9 with the tail-area methodology
of Benjamini and Hochberg (1995). We shall first look at the
link of the BH methodology with the posterior probability

that the jth gene is not differentially expressed conditional on
tail areas rather than on actual values as with the use of
τ0(wj).

Using Bayes theorem, we have that:

If we transpose the events on the left-hand side of
equation 27, we have the usual definition for the P-value of the
test that rejects the null hypothesis for sufficiently large wj.

Suppose that we declare the jth gene to be differentially
expressed if wj is greater than wo, where wo is defined to be
the minimum value of w such that the right-hand side of
equation 27 is equal to α; that is:

Then the FDR of this rule is bounded by α (Efron et al.
2001; Genovese and Wasserman 2002; Wit and McClure
2004). It also has an interpretation in terms of the q-value of
Storey (2003). Suppose that the right-hand side of
equation 27 is monotonic (decreasing) in w. Then, as shown
explicitly in Wit and McClure (2004), if we set π0 equal to 1
and estimate F(w) by its empirical distribution in the
right-hand side of equation 28, the consequent rule is
equivalent to the BH procedure.

Concerning the link with the rule (equation 9) based on
τ0(wj) which uses densities rather than tail areas, it can be
noted that the right-hand side of equation 27 is also the
conditional expectation of τ0(Wj) given that Wj ≥ w (Efron
2004). Further, if τ0(w) is monotonic (decreasing in w), it is
equivalent to declaring the jth gene to be differentially
expressed if:

w ≥ wo (29)

where wo is the value of w such that:

τ0(w) = co. (30)

(26)pj = Σ #{i : w0i  ≥ wj , i = 1,…,N}/NB(b)

b=1

B
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Figure 1. Histogram of the pooled 2-sample t-statistic under
1000 permutations of the class labels with t13 density superimposed. An
example of a null case: with 7 N(0,1) points and 8 N(0,1) points.

Histogram of y

-6 -4 -2 0 2 4 6 
0

20  

40  

60  

80  

100  

F
re

q
u

en
cy

y values

Figure 2. Histogram of the pooled 2-sample t-statistic under
1000 permutations of the class labels with t13 density superimposed. An
example of a non-null case: with 7 N(0,1) points and 8 N(10,9) points.

(27)pr{Hj = 0 |wj ≥ w} = π0                  
1 – F0(w)

1 – F(w)

(28)wo = min{w : π0                   = α}
1 – F0(w)

1 – F(w)
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Then its positive FDR is given by:

and so it, and hence its FDR, will not exceed α if wo is
chosen according to equation 28.

Thus if we were to use the modified form of the BH
procedure with α replaced by α/π0, then the Bayes rule
approach is equivalent to the tail-area-based BH procedure.
Of course in practice, we do not know π0, the proportion of
genes that are not differentially expressed. We have seen that
the mixture model equation 6 provides a framework in which
to estimate π0. Also, it provides an estimate of the local FDR
for each gene, namely the posterior probability τ0(wj) of
nondifferential expression for the jth gene.

The estimate (eqn 17) of the implied (global) FDR of the
Bayes rule-based approach can be viewed as being semi-
parametric. In the case where τ0(w) is monotonic in w, we
can construct a fully parametric version by using the
equation 31. Under the use of the standard normal for the
null density and the formulation of the density as the normal
mixture model, we can take F0(wo) = Φ(wo) and:

in the right-hand side of equation 31. In our experience, this
estimate is very similar to the semiparametric equation, as in
the following example. In equation 32, µ̂i and σ̂i denote the
fitted mean and standard deviation of the ith normal
component in the mixture model.

Example of the decision-theoretic approach
We consider the study of Hedenfalk et al. (2003), which

consisted of n1 = 7 BRCA1 arrays and n2 = 8 BRCA2 arrays,
along with some arrays from sporadic breast cancer. One
goal of the study by Hedenfalk et al. (2003) was to find
genes that are differentially expressed between BRCA1 and
BRCA2-mutation-positive tumours by obtaining several
microarrays from each cell type. In their analysis they
computed a modified F-statistic and used it to assign a
P-value to each gene. A threshold of α = 0.001 was selected
to find 51 genes from a total of N = 3226 that show
differential gene expression. These authors subsequently
used a threshold of α = 0.0001 and they concluded that
9–11 genes are differentially expressed.

We applied our decision-theoretic approach to this
dataset. In Table 1, we report the estimated values of the
FDR, calculated using equation 18, for various levels of the
threshold c0.

It can be seen that if we were to declare the jth gene to be
differentially expressed if τ0(wj) ≤ 0.1, then 175 genes would
be selected as being significant, with an estimated FDR
equal to 0.06. The prior probability π0 of a gene not being

differentially expressed was initialised to be 0.48. The
estimates of the FDR in Table 1 are based on the
semiparametric version (equation 17). We found that they
were the same (to the second decimal place) as those
calculated using the fully parametric estimate based on
equation 31.

Of the 175 genes we found to be significant, 137 are
overexpressed in BRCA1 tumours relative to BRCA2.
Hedenfalk et al. (2003), and Storey and Tibshirani (2003b) in
their further analysis of this dataset, found that a large block
of genes are overexpressed in BRCA1. In particular, these
included genes involved in DNA repair and cell death, such
as MSH2 (DNA repair) and PDCD5 (induction of
apoptosis), also identified by us.

For this dataset, Efron (2004) noted that the theoretical
null distribution appears to be somewhat different from the
empirical null. Hence it may not be wise to trust the
theoretical null here, and in future work we will consider the
estimation of the null component in the normal mixture
model (equation 32).

Conclusion
In summary, we feel that a mixture model-based approach

towards finding differentially expressed genes in microarray
data can provide useful information beyond that of other
methods. It gives a measure of the posterior probability that
a specific gene is not differentially expressed (a local FDR).
Standard methods for multiple hypothesis testing tend to
focus on measures on the global FDR. The mixture model-
based approach can also be used in the spirit of the q-value.
A threshold can be obtained for the posterior probability of
non-differential expression to ensure that the FDR is
bounded at some desired level if all genes below the
threshold are declared to be differentially expressed.
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