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Abstract—This paper provides a description of the methodol-
ogy used in the IEEE Computational Intelligence Society 3rd
Technical Challenge, which involved solar and building load
forecasting, and optimization of the associated microgrid at
Monash University. It achieved first place in the forecasting
task and second place in the optimization task. The evaluation
phase of the forecasting challenge required forecasting the 15-
minute solar generation and building load of six solar installations
and six buildings in a microgrid system at Monash University
for the month of November 2020. Historical energy data was
available with daily weather data from the Australian Bureau
of Meteorology (BOM) and hourly data from the European
Centre for Medium-Range Weather Forecasts (ECMWF). A
quantile regression forest approach was chosen, using the weather
variables provided, plus temporal variables. Novel thresholding
approaches were used to improve the quality of the input data.
As the training and evaluation phase of the challenge occurred
during COVID-19 lockdown and reopening, the building demand
was subject to pandemic-related effects. The approach used for
the optimization task is described, which required mixed-integer
programming (MIP) and mixed-integer quadratic programming
(MIQP).

Index Terms—time series forecasting, solar forecasting, renew-
able energy, random forests, optimization.

I. INTRODUCING THE FORECASTING AND OPTIMIZATION
PROBLEMS

In 2021, the IEEE Computational Intelligence Society ran a
“predict + optimize” competition from 1 July to 3 November
online [1].

The geographical context of the competition was at Monash
University in Melbourne, Australia. In this microgrid, the
electricity demand at a set of six buildings was met by a set
of six solar installations, while a set of batteries with differing
capacities and efficiency rates may be charged or discharged
to meet requirements. A related optimization problem in the
competition concerned how the energy requirements could be
met at lowest cost using the batteries and foreknowledge of
electricity prices.

The competition ran in two phases. In Phase 1 from 1
July to 11 October, competitors were able to upload forecasts
to a public “leaderboard” which would calculate the Mean
Absolute Scaled Error (MASE) [2] of each the twelve time
series for October 2020. The mean of these twelve MASE
values would then be displayed on the leaderboard within a

few minutes, and there was no limit on the number of entries
competitors could try. At the end of Phase 1, the load and
solar data of October 2020 (the twelve time series) was made
public, and Phase 2 began.

From 13 October to 3 November, competitors could upload
forecasts, but the leaderboard only provided an indication of
whether forecasts (for November 2020) were better, worse,
or the same as a reference forecast of all zero values. On 3
November the MASE and energy cost figures were released,
while the energy data was released on 6 December.

Section II describes the data available in the competition:
prediction and historical energy data, and reviews the variables
used in other competitions and papers. Section III discusses
the approach used the develop the forecast for Phases 1 and
2 of the competition.

Section IV explains the optimization approach chosen and
Section VI concludes the paper.

II. DATA

A. Weather data

Competitors in the challenge were permitted to use external
data from two sources: the Australian Bureau of Meteorology
(BOM) weather data available through Climate Data Online
[3] and the European Centre for Medium-Range Weather
Forecasts (ECMWF) [4], [5] data provided by OikoLab [6].
Thus, the competitors were allowed to use “perfect forecast”
weather data. From the BOM data, we used only the “daily
global solar exposure” data, although daily minimum and
maximum temperatures and daily rainfall data were available.
The European Centre model is known as ERA5 and provides
hourly historical weather (reanalysis) data.

The BOM “daily global solar exposure” data is measured
from midnight to midnight each day, and is the total solar
energy for a day falling on a horizontal surface. For the stations
used in this study, values ranged from 1.3 to 32.3 MJ per
square metre in 2019 and 2020.

The BOM daily global solar exposure data was available at
three nearby sites - Oakleigh, Olympic Park, and Moorabbin
(BOM sites 86077, 86088 and 86338 respectively).



B. Building and solar data

1) Solar: The solar installations, named Solar0 to Solar5,
appeared to be of sizes of approximately 8 to 50 kW. The data
for Solar0 only began in April 2020, but the estimated capacity
factors of each installation (using data up to and including
October 2020) ranged from 15.9% (Solar5, max 40.4 kW) to
23.5% (Solar1, max 12.7 kW).

For Solar0, 86% of the time-series values are non-zero;
for Solar5, this proportion is 30%; while for the others, the
value ranges from 38% to 48%. It seemed that some kind of
cleaning or thresholding approach could be used to improve
performance for forecasting Solar0 and Solar5 values and this
proved to be true.

We thresholded the data from Solar1, Solar2 and Solar3 time
series to begin from 22 May 2020. All of Solar0, Solar4 and
Solar5 time series were used in training, although only hours
where at least one period of generation (of four) was greater
than 0.05 kW were used for Solar0 and Solar5 training.

2) Buildings: The provided data for the buildings and solar
installations began at various dates, with the earliest data
available from “Building 3” on 1 March 2016. The data for
some buildings was very spotty; for example, Building 4 had
46,733 values but 18,946 of the values were unavailable. The
modal and median value for Building 4 (19,621 occurrences)
was 1 kW and all the other values were 2, 3, 4 or 5 kW. A
perfect approach for data such as Building 4 would forecast
one of these discrete values as the error rate for every series
was significant for the competition, regardless of size.

We omitted one day in October 2020 from the building
training data due to a public holiday effect in the data (Friday
before Grand Final). It was unclear whether the public holiday
was having an effect on this day, while November 2020 (the
evaluation month) had no significant public holidays.

III. FORECASTING METHODS

A. Forecasting metric

The metric used in the competition, MASE, or Mean Ab-
solute Scaled Error, is calculated as defined in [2], as follows.

Let Yi, i = 1, . . . , n be the observations at time t and Ft

be the forecast at time t, with the forecast error et = Yt −Ft.
Then calculate the scaled forecast errors qt as

qt =
et

1
n−1

∑n
i=2 |Yi − Yi−1|

(1)

with MASE = mean(|qt|).

B. Initial Investigation

We began by using the Generalized Additive Model as
seen in [7]. This was to develop an initial feel for how
temperature and solar variables in the ECMWF (ERA5) data
set affected each building and solar installation, along with
temporal variables (weekend, time of day, and day of year).

We noticed that the buildings were very different in terms
of load on weekend and public holidays (see Building 1, 3
and 6 in Figure 2), and that temperature and solar (leading
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Fig. 1. Solar time-series data in kW for October 2020

and lagging) were the most critical predictor variables in the
models for the buildings and solar output.

We quickly switched to a random forest model as the focus
of the competition was purely the lowest error rate, rather than
explainability or visualization.

The ranger package [8] in R has provided multi-threaded
random forests with an extension of options over those seen
in the original quantregForest package of [9].

A plot of the solar and building traces for October 2020
(the data held out for Phase 1) is shown in Figures 1 and 2.

The solar traces seemed to be genuine 15 minute readings,
while Buildings 0 and 3 were series of 15 minute values
repeated 4 times each. It seemed that Building 4 and Building
5 readings were uncorrelated or poorly correlated to any
weather or temporal variables we were provided. Thus, for
the November 2020 forecast, we simply repeated the median
value from October 2020 (i.e. “manual optimisation”). This
observation saved time in the prediction development and
iterative process as the observations for only the other four,
rather than all six, buildings were used in the combined
training data.

We thresholded values from Building 0 and 3 as some of
them appeared to be large outliers. Building 0 and 3 upper
bounds were set to 606.5 and 2264 kW while the Building 3
lower bound was set to 193 kW.

A “maximal” approach was used; that is, for each building
time series, the training data start date was decreased month by
month as far as possible until the error rate started increasing.
For the building time series, this was the months of June,
February, May, and January 2020 for Buildings 0, 1, 3 and
6 respectively. That is, for Building 0, the training data for
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Fig. 2. Building time-series data in kW for October 2020

Phase 1 consisted of June to September 2020 inclusive, while
for Phase 2 the training data was from June to October 2020
inclusive. It was assumed that all the most recent data should
be included in training. We attempted to add a recency bias
for newer data following [10] using exponential decay in the
ranger training, but this was unsuccessful.

The approach chosen here was the most difficult and most
purely subjective choice made by us in the competition. It
was assumed that a full reopening after COVID-19 restrictions
were lifted (in October 2020) would not result in a return
to pre-2020 levels of building energy use. For example, the
maximum Building 3 energy use observed was 683 kW after
May 2020 but there were observations of over 1,000 kW on
19 March 2020. The last observation over 700 kW was on 27
March 2020 after which it was assumed stricter COVID-19
lockdowns commenced.

C. Forecast code

The forecast code was built in R due the availability of
useful packages such as ranger, xts, and lubridate.

The following list shows the pseudo-code loop we used for
the model development. The same R code was used for Phase
1 (October) and Phase 2 (November) with only the phase
parameter changed (although different random seeds would
perturb the output slightly).

• Pick a time series or group of time series
• Perform adjustment:

– Adjust start and end dates of training data
– Perform thresholding (effective for Solar 0 and Solar

5 series)

– Add or subtract predictor variables (e.g. leading and
lagging variables, BOM variables)

– Group solar or buildings together differently
– Adjust random forest parameters (number of trees

and mtry)
• Assess MASE of Phase 1; if a change has resulted in a

lower MASE, then retain the change, otherwise discard
it

Feature selection was generally performed manually using
our knowledge of other competitions and experience in solar
and energy forecasting, rather than an automated step-wise
process of addition and subtraction of variables. This was mo-
tivated by time pressure of the competition. Initially all groups
of buildings and solar installations were trained together, and
the highest variables in terms of importance across all of the
group were extracted. The idea was to avoid overfitting and
save time by choosing only directly relevant variables and
testing only against a proxy for the evaluation metric - the
MASE of Phase 1. In a production environment the validity of
these assumptions should be verified through cross-validation.

After performing feature selection for each building and
setting the value of Building 4 to be 1 kW for the whole month
of October, we achieved an error rate (MASE) for Phase 1 of
0.6528. This required the selection of start months for the
buildings and solar data, further refined in Phase 2.

By the end of Phase 1, we had lowered this to 0.6320 by
incorporating median forecasting of the time series (that is,
the 50th percentile in quantile regression) and adding in BOM
solar data.

On 13 October, the individual Phase 1 time series became
available so we investigated how the MASE value was derived
using the provided data and R program.

We then added the following improvements sequentially
through experimentation as each change seemed reasonable.
We thought each change would improve the error rate for
Phase 2 (November 2020) as well. The possibility of overfit-
ting seemed minimal as each of the changes could be justified
with reference to the closest month of October 2020.

• Added cloud cover variables ± 3 hours; MASE 0.6243,
16 October

• Selected solar data from beginning of 2020 instead of
from day 142 (22 May); MASE 0.6063, 17 October

• Selected start month (0-8) for each of four building
series from 2020, added all possible weather variables,
set building 5 equal to median training value 19 kW;
MASE 0.5685, 18 October

• Fixed up Solar5 data by filtering out values less than 0.05
kW; MASE 0.5387, 24 October

• Observed that forecasting Solar0 and Solar5 as linear
combinations of the other Solar variables was working
better than the actual Solar0/5 prediction

• Observed that some pairs of solar series were much more
highly correlated than other pairs, and buildings 3/6 were
also highly correlated

• Tested exponential decay ideas, which were unsuccessful



• Trained all solar and building data together following [11]
(MASE 0.5220, 30 October).

• Fixed up Solar0 data by same filtering as for Solar5
(MASE 0.5207, 31 October)

• Added in separate binary variables for each day of the
week (MASE 0.5166, 2 November)

Based on this result, we were expecting a similar MASE
for Phase 2; however, the “reopening” effects of lockdown
resulted in a reversion to historic usage patterns in some of
the buildings, which diverged from our forecast.

Naturally this “reopening” affected all competitors. In a
production environment, instead of having a “month-ahead”
forecast, the forecasts would be day-ahead and able to rapidly
adjust to reopening effects.

Although we do not know the types of the buildings, we
surmise that in November 2020 the air-conditioning use of
some of them began to revert to the long-term mean. Thus,
our approach of choosing different starting months for each
building to minimize MASE vis-a-vis October 2020 led to
model outperformance.

D. Model description

We summarise the predictor variables used in the building
and solar modelling and discuss their relative importance.

The building predictor variables are being used to predict
the quarter-hour energy usage for each of the buildings; that
is, a different model is used for each quarter-hour offset (:00,
:15, :30 and :45 of each hour). In the final model, all the
solar and building variables (for Buildings 0, 1, 3 and 6) were
normalized using the maximum value found in the training
data.

The weather variables (t2m, d2m, wind, MSLP, R, SSRD,
STRD and TCC) are the variables provided by OikoLab via
the ERA5 model: 2 metre temperature, 2 metre dewpoint
temperature, wind speed, mean sea level pressure, relative hu-
midity, surface solar radiation downward, and surface thermal
radiation downward.

We added an indicator variable to identify the building
being predicted, analogously to the same variable in [11]. Each
weather variable had leading and lagging variables added one,
two or three hours from the period. Lagged temperatures of 24,
72 and 48 hours before are used for building training, based
on the market demand modelling of [12]. These proved to be
significant variables in the building energy forecasting.

The variables Moorabbin, Oakleigh and Olympic are re-
peated values for the BOM daily solar global exposure vari-
ables at three sites. That is, in each quarter hour, the variable
is assigned the daily solar global exposure for that day, as the
value is measured from midnight to midnight.

The variables “sin hr” and “sin day” refer to the Fourier
terms related to the hour of the day and the day of the year
(Julian date). Thus sin hr = sin( 2πhr24 ) and sin day =

sin( 2πday365 ) and similarly for the cosine term. These terms
model the diurnal and annual cycle in the building energy
usage and solar generation. Including these temporal terms,
plus the weekday/weekend Boolean variable for the buildings,

gives a good first approximation to the building energy usage
and solar generation.

These terms are also seen in other competition winning
entries such as [13] where the competitors used these terms in
both the solar and wind forecasting tracks of the 2014 Global
Energy Forecasting competition.

Others variables are binary for weekend (“wd”), Mon-
day/Friday (“wd1”), Tuesday/Wednesday/Thursday (“wd2”)
and named variables for each day of the week.

Out of the individuals/teams who made submissions to the
evaluation Phase, our entry had the lowest MASE for Phase
2 of 0.6460. From six entries with known time series MASE,
it achieved the lowest MASE on three buildings, the equal
lowest MASE on one other building, and the lowest MASE
on each of the six solar installations.

The outperformance is due to many factors including the
fine-tuning described above in Subsection III-C. We believe
that relative to other competitors the approaches of thresh-
olding each building input data set differently, modelling all
solar time series together, and including both daily and hourly
weather data in the model led to its strong outperformance.

IV. OPTIMIZATION

The optimization task was to minimize a cost which
included three terms: a quadratic term proportional to the
monthly peak load, a linear term reflecting the cost of energy
used during the month, and costs (or benefits) related to the
scheduling of once-off activities.

The constraints related to the scheduling of recurring or
once-off activities. Each activity required the use of a specified
number of large or small rooms in each building, used a
given number of 15 minute periods, and a specified amount
of energy. Each building has a given number of large or small
rooms. The cost was to be minimized over ten provided in-
stances: five small each with 50 recurring/20 once-off activities
and five large each with 200 recurring/100 once-off activities.

The recurring activities had to be scheduled within office
hours (9am-5pm weekdays) meeting a series of precedence
constraints based on the day of the week, and these recurred
in every week of the month scheduled. Once-off activities
could be optionally scheduled, and would receive a bonus if
scheduled, and a penalty if scheduled outside of office hours.
Such activities had to meet constraints based on the day of the
month.

In addition, two batteries were present, which could be
charged or discharged in any period, and had different capac-
ities and charge/discharge rates. These could be used to either
reduce the effect of high pool-price periods, or decrease the
peak load over the month, or both. Further details may be
found at [1].

Here, O represents the objective function to be minimized,
lt is the net load (buildings minus solar) in period t, et is the
wholesale energy cost in period t, di is a Boolean variable
reflecting whether “once-off” activity ai is scheduled, oi is a
Boolean variable reflecting whether the activity is scheduled



in office hours, while valuei and penaltyi reflect the benefit
or cost, respectively, of scheduling the once-off activity.

O =
∑
t

0.25ltet
1000

+ 0.005(max
t

lt)
2

−
∑
ai

(di(̇valuei − oipenaltyi))
(2)

A four-step approach was used using the forecast task
output.

First, a mixed-integer program (MIP) was solved for the
recurring and recurring plus once-off activities, then each of
these was extended using a mixed-integer quadratic program
(MIQP).

The general strategy was chosen from one of two (“array”
from the “array” and “tuples” approaches) while the specific
step improvement strategy was chosen from one of five (“no
forced discharge”).

The optimization code was written in Python using Gurobi
as a solver. Thus, the key input files for the Python optimiza-
tion were the vectors of prices for the month plus the vector
of “net” load (that is, sum of building load minus sum of
solar generation) for the month; 2,976 values for October 2020
(Phase 1) and 2,880 values for November 2020 (Phase 2).

After examining the Phase 2 instances, we decided to try to
include all the once-off activities only in “peak” periods as this
was much easier in MIP terms and the sum of the penalties
for scheduling the once-off activities in “off-peak” exceeded
the benefits for scheduling them in “peak” in every instance.

• Develop a MIP for each of 5 small and 5 large instances
- minimize the recurring load over all peak time periods

• Extend the solution of each MIP (Phase 2) to include all
once-off activities in peak

• For each of 10 instances, solve the MIQP: attempt to
add batteries and shift activities using the “no forced
discharge” approach described below; consider all inter-
mediate solutions

• Perform the same task for the “recurring plus once-off”
solutions found

• Assess the cost using the objective function; if the “re-
curring plus once-off” cost for an instance is lower than
the “recurring only” cost choose that solution, otherwise
choose the “recurring only” solution

The approach is shown in Figure 3.

V. EXPERIMENTS

After attempting to solve the ‘small’ and ‘large’ instances as
mixed-integer quadratic programs (MIQPs) with the quadratic
term in the objective function, we soon realized that the cost of
electricity from the pool prices (wholesale price) varied little
between solutions, and the best solution would be much more
easily found by solving a MIP (mixed integer program).

That is, first minimize the recurring load over all peak
time periods for the set of small and large instances, store
all the intermediate solutions, and then attempt to solve the
MIQP (incorporating the peak quadratic term in the objective

Solve MIP to 
minimize peak 
“recurring only”
load

Solve MIP to 
minimize
peak “recurring plus
once off” load

Solutions

(A) Solve MIQP to add 
battery and shift recurring
activities to minimize total 
cost with “no forced 
discharge” approach

(B) Solve MIQP to add 
battery and shift
recurring and once-off 
activities to minimize total 
cost with “no forced 
discharge” approach

For each activity 
examine the cost of the 
(A) and (B) solutions 
and submit the lower 
cost schedule 

Fig. 3. Phase 2 Optimization Solution Approach

function) by allowing Gurobi to check if moving activities
around from the intermediate solutions could decrease the
cost. Attempts to add constraints to the MIP to bias the
solution away from weekdays with a higher average price were
unsuccessful.

The organizers envisaged that forecast skill would have
more effect in Phase 2 than Phase 1, but judging by the final
Phase 2 leaderboard, it seems that there was little correlation.
Perhaps having a commercial solver such as Gurobi and access
to high-performance computing facilities were more important
factors. In contrast, the forecasting task could be performed
on a single computer in minutes.

A paper [14] examined developing scheduling algorithms
for home battery/inverter combinations.

In that work, a key design decision was never to charge
in peak hours and assess cost of different battery scheduling
approaches over 83 inverters. The approaches included PV per-
sistence, PV and Load persistence, Load persistence, quantiles
of 50/50 and 60/40 for the PV and Load, and persistence of
the last hour.

In the current work, we considered five approaches:
• Conservative is just choosing the lowest recurring load

and lowest recurring + once off load and evaluating cost
using a naive or flat forecast. This was probably the win-
ning approach for cost in Phase 1, as some competitiors
had winning results with no forecast, or a poor forecast,
but seemed pointless to me as the organizers said quality
of forecast should contribute to results in phase 2.

• Forced discharge forbids any charging in peak hours, and
forces at least one of the two batteries to be discharging
in every peak period. This was thought to avoid nasty



surprises in the peak load as in phase 1 one of the actual
observed values (period 2702 of 2976) was 260 kW
above my final forecast (i.e. forecast with 0.5166 MASE).
However, although values drop randomly in and out of
the building data, we hoped that there were no “outliers”
in phase 2 as promised (although this “outlier” comment
from the competition organizers probably referred to the
repeated 1744.1 kW values in the Building 0 trace -
periods 1710 to 1713 of 2976).

• No forced discharge forbids any charging in peak hours,
but the MIQP solver decides whether to discharge or do
nothing in those hours.

• Liberal allows charging in peak, but the maximum of
recurring + once off + charge effect for each period is
limited to the maximum of recurring + once off load
over all periods. This is to avoid nasty surprises when
the solver thinks that a period has low underlying load
and schedules a charge (due to a low price in that period)
but then accidentally increases the maximum load over
all periods, which can be very costly.

• Very liberal allows charging over peak and does not
attempt to control the maximum of recurring + once off
+ charge effect. This would be the best approach if the
forecast was perfect.

Each approach was assessed starting with the best Phase 1
solutions obtained (and the best forecast available for Phase
1). A Java program provided by the competition organizers
was used to calculate the cost of each approach.

It was found the “liberal” and “very liberal” approaches
resulted in the lowest objective function value for the MIQP;
but the prices obtained were actually higher using the known
load and solar values. Over the 10 sample problems, the total
cost was lowest for “no forced discharge” (evaluated prices:
$396,264 for Forced, $396,060 for No Forced Discharge) and
so this approach was used for Phase 2. Ultimately only “Large
2” and “Large 4” solutions included once-off activities.

The estimated final cost for Phase 2 was $261,906 and
after the final leaderboard was published, the actual cost was
$335,107. This underestimate was due to increases in energy
use at several of the buildings.

VI. CONCLUSION

In order to forecast 15-minute energy and solar time-series
data, we applied the quantile regression forest of [9] based on
the original random forest idea of [15] as provided in the R
ranger package [8]. This was highly effective in conjunction
with techniques of thresholding, grouping related buildings
and solar installations, combining daily and hourly data from
two uncorrelated data sources, and normalization. The quantile
regression forest approach was ideal as it required minimal
parameter tuning and thus the process of building and testing
models was expedited in the time-pressured environment of
the competition.

For each phase, the training data for each building and solar
installation was extended back from the latest available data,
month by month, until the error rate for each building or solar

time series began to increase. In a production environment as
opposed to a competition, this approach should be verified
by performing cross-validation. This approach of grouping
and thresholding may have captured different building types
present on campus and their differing response to reopening,
as seen in studies of the effect of Covid-19 lockdowns on
energy at universities campuses worldwide.

The success of combining daily solar exposure data with
hourly surface solar radiation data was unexpected and played
a large part in the outperformance of the approach versus the
other contest entrants.

For optimization, we used a two-step process of building a
mixed-integer program and extending this to a mixed-integer
quadratic program to minimize the cost over a month. After
examining five approaches, we chose an approach of no forced
discharge of batteries to extend each MIP.

The code used may be found at online at [16].
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